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ABSTRACT

In this article we present a self-contained account of the recent
theory of micropolar elasticity. Micropolar elastic materials, roughly
speaking, are the classical elastic materials with extra independent degrees
of freedom for the local rotations. These materials respond to spin inertia
and body and surface couples, and as a consequence they exhibit certain new
static and dynamic effects, e.g., new types of waves and couple stresses.

The theory is fully deterministic as against the background of the recently
popular indeterministic couple stress theory (cf. Art. 23). The mechanics
of certain classes of materials with fiberous and elongated grains (e.g:,
dumbbell types ~{ grains) represents a potential field of application of the
theory.

The geometry of deformation and its measures are intrcduced on a more
general background of materials exhibiting granular and microstructuigiﬁgiiro-
morphic materials). Various types of microstrains and microrotations are
discussed., Compatibility conditions for the micropolar strains are derived
The kinematics of strains, microstrains and rotations are presented. Basic
laws of motion, conservation of mass, conservation of microinertia, balance
of momentum, balance of moment of momentum, conservation of energy are postu-
lated and their local forms are obtained. The thermodynamics of micropolar
solids is formulated and the consequences of the entropy inequality are
discussed. Constitutive equations are found for the linear theory of micro-
polar elasticity. The basic field equations and initial and boundary conditions
are given,

The indeterminate couple stress theory is shown to result as a special
case of the theory when the motion is constrained. Seve:ral static and dynamic

problems are solved to reveal scme of the new physical phenomena exhibited by



the theory. These include propagation of waves in infinite micropolar
elastic solids, reflection of various types of micropolar waves in a
half space, surface waves, the stress concentration around a circular
hole in a tension field, and force and moment singularities in an infinite
solid. The Papkovitch and Galerkin representations are presented.

The article is based mostly on the works of Eringen and his co-workers
published during the past several years. Many parts, however, contain new

compositions and several other results are presented for the first time.
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1. INTRODUCTION

Classical continuum mechanics is based upon the fundamental idea
that all material bodies possess continuous mass densities, and that the
laws of motion and the axioms of constitution are valid for every part
of the body no matter how small they may be. Accordingly, a small volume

AV enclosed within a surface AS possesses a mass density p defined by

(1.1) . lim 4m

P = av+0 BV

where Am is the total mass contained in AV, Here p is independent of the
size of AV and depends only on the position vector x of a point in AV and
time t. Consider the following experiment for the measurement of p: The
mass density of a homogeneous material may be calculated approximately by
weighing a large number of pieces having different vclumes and calculating
the ratio 4m/AV for each piece. If the resulting numbers p are plotted
against AV, one finds that this ratio is nearly constant when AV 1is greater
than certain critical volume AV* and begins to show dependence on AV when
AV < AV*. The size of AV* depends on the constitution of the material. As
AV approaches zero, this dependence becomes violent, Fig. 1l.1. This situa-
tion is well-understood when we remember the granular and molecular nature
of materials., The classical continuum theory may therefore not represent
a good mathematical model fnr the approximation of a physical theory in the
range AV < AV*.

The loss of accuracy in classical continuum mechanics may stem from
another important reason. If the response of the body is sought to an external
physical effect in which the length scale is comparable to the average grain

or molecular size contained in the body, the granular or molecular constituents
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of the body are exited individually, In this case, the intrinsic motions
of the constituents (microelements) must be taken into account., This point
becomes clear especially in connection with the propagation of waves having
high frequencies or short wave lengths, When the wave length is of the same
order of magnitude as the average dimension of the microelements, the intrinsic
motions of the microelements of AV with respect to the center of mass of AV
can affect the outcome appreciably. This situation previals in practical
applications when the material under consideration 1s a composite material
containing macromolecules, fibers, and grains. For such materials, the critical
volume AV* 1s of the order of magnitude of the cube of a fraction of an inch
to several inches. Solid propellant grains, polymeric materials, and fiberglas
are but a few examples for such materials.

Another example is the anomalous behavior of blood when flowing through
capillaries. Blood consists of a fluid (plasma) in which are dispersed elements
of microscopic dimensions (corpuscles). When blood flows through capillaries
whose diameter is comparable to that of the corpuscles, the flow characteristics
differ from those for large vessels. As a further example, experiments have
shown that the resistance of a solid to surrounding fluid can be reduced by as
much as 1/3 when a minute amount of additives are cast into fluid,

It may be conjectured that a rational treatment of surface tension, micro-
cracks, microfracture, and the mechanics of granular media and composite materials
ultimately will have to be based on the theory of microcontinua. The nature of
experimental work on the properties of such materials, no doubt, will be affected
with these developments.

Presently there exist several approaches to the formulation of micro-
mechanics. Some of these theories are very general in nature but incomplete
and not closed. Others are concerned either with special types of material
structure and/or deformations. Fundamental ideas contained in some of these

theories can be traced all the way to Bernoulli and Euler in connection with
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their work on beam theories. In the elementary beam theory, with each section
of the bar there is associated two sets of kinematical quantities, namely,

a deformation vector and a rotation vector and two types of internal loads,
namely, the tractions and couples. In plate theory, we have a similar
situation. Bar and plate theories involving these independent quantities

were recorded by Kelvin and Tait[1879). The existence of the stress couples
independent of tractions is essential to these theories. For three-dimensional
bodies, this concept is found in the work of MacCullagh [1839] in connection
with his work on optics. Lord Kelvin went as far as building a model of what
he called ''quasi-rigid" ether which is supposed to provide a mechanical model
for Maxwell's theory of electromagnetism. The existence and basis of couple
stress in elasticity was also noted by Voigt [1887] in connection with polar
molecules,

In a remarkable monograph, E. and F. Cosserat [1909] gave a unified
theory for the deformable bars, surfaces, and bodies. A Cosserat continuum
is defined as a three-dimensional continuum, each point of which is supplied
with a triadl. By the use of a principle which they call "euclidean action"2
and by calculating the variation of the internal energy density, they gave
the equations of local balance of momenta for stress and couple stress and
the expressions of surface tractions and couples. In the work of the Cosserat
brothers, we find that the effect of couple stress on the motion of deformable
bodies is fully taken into account.

Some fifty years elapsed after the work of the Cosserats with very little

activity in this field. The idea of a Cosserat continuum was revived in various

L In the terminology of Truesdell and Noll [1960, Ar:. 256] "directors'", the
same terminology and similar ideas were used by Toupin [1964], Green, Rivlin
and Naghdi [1965].

F Equivalent to the principle of objectivity, cf. Eringen [1962, Art. 27].



special forms by Glinther [1958], Grioli {1960}, Aero and Kuvshinskii [1961],

and Schifer [1962]) of whom Glinther also remarked on the connection to the

theory of dislocations. The question of couple stress was reopened with

an incomplete theory of Cosserat bars and surfaces included in Truesdell

and Toupin [1960). Mindlin and Tiersten [1962], Toupin [1962], Eringen

[1962, Arts. 32, 40] recapitulated a special Cosserat continuum now known

as the (indeterminate) couple stress theory. In these theories, the rotation

vector is not an independent vector, consequently the antisymmetric part of

the stress and symmetric part of the couple stress remains undetermined

(cf. Art. 23 below). Eringen and Suhubi [1964a,b] and Eringen [1964 ] intro-

duced a general theory of a nonlinear microelastic continuum in which the

balance laws of continuum mechanics are supplemented with additional ones,

and the intrinsic motions of the microelement contained in macrovolume AV

are taken into account, This theory, in special cases, contains the Cosserat

continuum and the indeterminate couple stress theory. Independently, a micro-

structure theory of elasticity was published by Mindlin [1964] and a multipolar

continuum theory by Green and Rivlin [1964]). Both of these theories appear

to have contacts with thcse of Eringen and Suhubi, in special situations.

Following these works, an intense activity began and literature now contains

several hundred papers in this and in related fields. A proper assessment

of these works with appropriate references is beyond the scope of this article.
This article is concerned, basicially, with special types of continua

called micropolar continua. The thecry was initiated by Eringen and Suhubi

(1964b, Art. 6] as a special case of their work cn the microelastic solid
and was named couple stress theory. Later, Eringen [1966a,b] recapitulated
and renamed it micropolar theory and proved several uniqueness theorems. A

similar theory appears to be given, independently, by Palmov [1964) for the



linear elastic solid. While the theory is fresh and no experimental work
has been published as yet, we believe that the results obtained so far are
sufficient to strengthen the future of the theory.

The theory of micropolar elasticity is concerned with material media
whose constituents are dumbbell molecules. These elements are allowed to
rotate independently without stretch. The theory is expected to find appli-
cations in the treatment of mechanics of granular materials with elongated
rigid grains and composite fiberous materials.

The first eight sections (Arts. 2 - 9) of this article give a treat-
ment of the geometry of deformation and microdeformation, strain and rotation
measures, compatibility conditions, and some illustrative examples of deformation.
Sections 10 - 13 are devoted to kinematics and rate measures. External and
internal loads and the balance laws are discussed in Sections 14 to 17, and
energy and entropy in Sections 18 and 19. The constitutive equations of the
theory of micropolar elasticity and restrictions on the coefficients are
derived in Sections 20 and 21. The field equations, boundary and initial
conditions are prescribed and discussed in Section 22. In Section 23, we
show how the indeterminate couple stress theory arises as a special case of
the micropolar theory. Sections 24 through 29 are devoted to the solutions
of various problems.

Micropolar continuum mechanics is in the stage of its infancy. The
linear theory is reasonably simple and it lends itself to the solution of
some important boundary and initial value problems. A large class of unsolved

problems and experimental work offer a challenge to future workers.



2. DEFORMATION AND MICRODEFORMATION

A material point P of a body B having volume V and surface S in 1its
undeformed and unstressed state may be located by its rectangular coordinates
Xl, Xz,and X3 (or simply XK, K= 1,2,3), Fig. 2,1. 1If the body is allowed
to move and deform under some external loads, it will occupy a region
having volume V and having surface S. Referred to the same rectangular frame

of reference, the new position of the point P will be Xps X Xq (or simply

X 0 k= 1,2,3). Under the assumption of indestructibility and impenetrability

of matter, each material point in the undeformed body B will occupy a unique
position in the deformed body B.
Conversely, each point in F can be traced back to a unique point in B.

Thus, the deformation of the body at time t may be prescribed by a one-to-one

mapping

(2.1) X = xk(xl,xz,x3,t), k = 1,2,3
or its inverse motion
(2.2) XK = XK(xl,xz,x3,t), K=1,2,3

We assume that (2.2) is a unique inverse of (2.1) for all points contained in
the body except possibly some singular surfaces, lines K and points. For this

to be valid, the three functions xk(Xl,xz,X3,t) must possess continuous partial

derivatives with respect to Xl, Xz,and X3 for all times and the jacobian
3xl .axl axl
BXl 8X2 dAB
3 X ax X
- 2 2 2
(2.3) J = det =
BXK axl axz 3X3
3x3 3x3 3x3
axl aX2 8X3
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must not vanish., Henceforth, we assume this to be the case.

The partial derivatives

% %
(2.4) xk,K = —a')s—(' 0 x‘(,k = E

are called deformation gradients and they are basic in the study of continuum

mechanics.

We now consider a volume element AV enclosed within its surface A4S in
the undeformed body. Let the center of mass of AV have the position vector X.
All materials possess certain granular and fibrous structure with different
sizes and shapes. If the physical phenomena under study has a certain charac-

teristic length (such as wave length) that compares with the size of grains

in the body, then the microstructure of the material must be taken into consid-

eration. In such situations, classical continuum mechanics must be modified

by considering the effect of the granular character of tihe medium. Suppose

(a) (a)

that the el=ment AV + AS contains N discrete micromaterial elements AV + AS ,

(a = 1,2,...N), each with a mass density p(a). The position vector of a

material point in ath microelement may be expressed as

(2.5) g(u) =X+ =

~

(a)

(a)

where = is the position of a point in the microelement relative to the
center of mass of AV + AS, Fig. 2,2, Upon the deformation of the body,

4V + AS goes into Av + As with the microelement displaced with respect to

the mass center. Because of the rearrangements and the relative deformations
of the microelements, the center of mass P may now move to a position p and

the material point Q to a new position q in the deformed body. The final

position of the ath particle will therefore be

(2.6) x(a) = x + g(a)
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where % is the new position vector of the center of mass of Av and ;(a) is

the new relative position vector of the point originally located at ¥(u).
The motion of the center of mass P of AV is expressed as usual by (2.1) or

simply

(2.7) x = x(X,t)

(a)

The relative position vector ¢

_(a)

alsoon =7, 1.e.,

however depends not only on X and t but

(2.8) g4 o (o) (x,:(0) 4

-~

A microstructure theory must lean heavily on the assumption charac-

(@)

terizing the nature of the functional character of £ . Eringen and Suhubi
[1964a,b) and Eringen [1964] have constructed a general tneory in which (2.8)
~(a)

is linear in = . The theory so constructed was later called by Eringen

the theory of micromorphic materials. The basic assumption underlying this

theory is the

Axiom of Affine Motion. The material points in AV + AS undergo a

homogeneous deformation about the center of mass, thus,

(@) = (a) =(a)

£ = ) 0™+ &0+ a0 . a=1,2,...
or simply
(2.9) () - XKQ"C)Eéa)

where summation over repeated indices is understood. This assumption is justi-

fiable on the physical grounds that when AV + A4S is small enough, its motion

consists of a translation, a rotation about its center of mass, and a homogeneous

deformation. Note that in all classical theories of continuous media, this last

assumption is missing (cf. Eringen [1962, Art. 10}).
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Clearly, the theory can be extended to include quadratic and higher order
terms in §(u). However, it quickly takes a very complex form, losing its

simplicity and usefulness. In this article, in fact, we shall be concerned

mostly with a much simpler case, namely, the theory of micropolar elasticityl.

This latter theory admits only rigid microrotations of the micro-
volume elements about the center of mass of the volume element. In other
words, the basic assumption (2.9) is further simplified by placing further
restrictions on the three vector functions XK' As we shall see later, this
will amount to reducing the number of the microdeformation functions Xg from
three to one. In fact, we shall also be dealing mainly with the linear theory.
In classical continuum mechanics, the problem is centered around the determina-
tion of the spatial position x of all material points of the body at a given
instant. This means that when we are through with all calculations, we will
have the three functions *k(X’t) determined. In the theory of micromorphic
materials, in addition the three vector functions XK(X,t) (equivalently
nine scalar functions) must also be determined. The complicated nature of
the problem and the necess.ty of additional physical concepts and laws are
now apparent,

In coordinate form for the spatial position of a material point in a

microelement, we have

(2.10) X ek (0 + g X0, kK= 1,2,3

It is now clear that we have 3 + 9 = 12 functions, xk(X,t) and ka(X,t), to

determine the spatial position of the ath material point xéa)

Just as in (2.2), we introduce the inverse micromotions XKk such that

(2.11) Xk = Gk XLk = Cke

1
The theory was developed in the original paper of Eringen and Suliubi [1964b,
Sec. 6] as a special case of the general theory and was called the couple
stress theory. Eringen [1965] later named it the micropolar theory.
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Here and throughout this article, summation is understood to be over the

repeated indices, e.g.,

X X

Xk © %afie T %% ¥ %aXae

The symbols skl and GKL are the Kronecker deltas which are 1 when

the indices take the same numerical value and zero otherwise.

In component form (2.9) reads

(2.12) ‘E") = X (%5 c)‘(°‘)

Upon multiplication of both sides by ka and using (2.11), we also get

(2.13) £ o x 0 g?

In vector form this reads

(2.14)

1

(a) - )S((x t)ﬁ(a)

The rectangular components of 5k are denoted by XKk and those of Xg

by ka, i.e.,

X =
(2-15) (%,t)%k » [a) XKk(¥’t)¥K

Xg = Xpk “k

where IK and {k are, respectively, the unit base vectors for the material
coordinates XK and the spatial coordinates X
The motion and the inverse motion of a material point in a micro-

element are therefore expressed by

(2.16) (°‘) = %, (X,0) + x (X, c)~( o)

(2.17) xl((") = X (x,t) + X i (%o t)£(°)
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In vectorial form these read

(2.18) i((a) = )f()fst) + Zx(ggt)séa)
(2.19) x(* = x(x,6) + X (x,006{*

It is clear that we may employ either representations (2.16) or

(2.17), and that whenever either set of functions (xk,ka) or (XK’XKk)

are determined, the problem is completed since the other set is soluble

from the one that is found.
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3. STRAIN AND MICROSTRAIN TENSORS

The differential line element in the deformed body is calculated

through (2.18)

- (a)

(a) ~(a)
(3.1) dx = Q"K + ’.‘L,K' )de + ’.‘Kd'x

L

where an index followed by a comma denotes partial differentiation. This

convention will be used throughout this article. Thus, for example,

_ 9x . XL

(3.2) R T 0 XL,k 7 oax
aX

D -1

(3-2) e "o : X0k %,

are used for brevity. Note that (3.2)., and (3.3)l are the classical defor-

1

mation gradients, and (3.2)2 and (3.3), are the microdeformation gradients

2
of the present theory.

The square of the arc length is now calculated by forming

2
(ds(u)) = d§(°) 0 dg(a)

Upon using (3.1) and forming the scalar product, we find

(3.4) (ds("))2 = (C, +27I, = + ¥ X 2 .20) dede
KL KML ™M kM,K “kN,L™"N
2 XX, kW X4
+ kakadthEL
where we also dropped the superscript a on EK and dEK for brevity, since

this is understood whenever we use the letter =(and also §). In (3.4)
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we introduce the notations

(8-2) Cer X8 = X XL
(3.6) Y (Xot) = X K%L
<1l T ®) = X k%L u

Of these, C,. 1is the classical Green deformation tensor and Y

KL KL
and rKLM are new microdeformation tensors of the present theory.
(a)

We now introduce the displacement vector u as the vector that

extends from g(a) to ¥(a)' Fig. (3.1). Thus we write

(3.8) W e oxrgzaurg-
where

is the classical displacement vector, the componengsof which in XK and X,

are, respectively,

(3.10) Ug By “elg=eeliy mady
(3.11) I S N
where

(3.12) 8 ., =6 =4 -1

kK Kk = ~k K

Since the spatial and material frames are taken to be the same rectangular

frame of reference,6kK is none other than the Kronecker ‘elta which has
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the value one when the two indices take the same numerical value and zero
otherwise. It is possible to write xkakK g Xy and XKGKk F xk. But we keep
the convention of majuscule indices for the material frame and miniscule
indices for the spatial frame of reference. This convention is espec .v
useful in the nonlinear theory.

From (3.10) and (3.11), by partial differentiation, we obtain

(3.13) %,k T Ot UK S

(3.14) Xk ™ o = 9 1050

Similarly, we introduce the microdisplacement tensors ¢LK(¥,t) and ¢2k(§,t)

by
(3.15) Xk = Org + L)
(3.16) Xk ™ Cax ™ 0k

By use of (3.9) and (3.15) and (3.16), we see that (3.8) may also be uxpressed

as
@ e :
(3.17) u u+ g == (UK + ®KL'L)IK
(@ .
(3.18) u ut - E= (u +o BN
Upon substituting (3.13) and (3.15) into (3.5) to (3.7), we find that
(e S = %kt Ukl T ULkt UnkUn,L
(3.20) e = Skt fre YUk U %
(3.21) r = ¢ + U
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So far all these expressions are exact. For a linear theory, one assumes

that the product terms are negligible so that

(3.22) CKL 5 GKL + UK,L + UL,K

(3.23) Yy =685+ ¢, +U
(3.24) i) > ¢

In this case, the difference between the spatial and material representations
disappears so that one may use uy in place of UK and ¢k£ in place of ¢KL’ etc.,
a fact which is well known in the classical continuum theory (cf. Eringen
(1962, Art. 14]). For the microdeformation, this may be seen as follows: If

we use (3.15) and (3.16) in (2.11), we obtain

(3.25) o, = (85, + ¢ )¢

8
KL KM KM mléMm &L

Neglecting the product terms, we see that

¢ 6 6

(3.26) m& Ky LL

YL
which is the proof of our statement.

Since we will be dealing with the linear theory, we shall not distin-
guish between material and spatial representations except when it becomes
necessary for clarity in the development

The material (or lagrangian) strain tensor E_ . and the material nicro-

KL
strain tensors EKL and FKLM are defined in the linear theory by
(3.27) By ©2(C. -6 ) =%U,  +U )
KL ~ 2" KL KL 2 K,L L,K
(3.28) E, =y, -8, =3¢  +1U

KL -~ 'KL™ KL KL L,K

(3.29) Fem = Yku
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In the light of what has been shown above, we may also introduce

the spatial (or eulerian) strain tensor e and spatial microstrain

ki

tensors, ek2 and (klm in a similar fashion:

(3.30) e S 2 (U gt U )

(3.31) €

(3.32) Ykim = 7 %ke,m

Clearly, when these tensors are known, changes in arc length and angles
during any deformation of the body can be calculated.

For the linear theory, the difference between the squares of arc
length in the deformed and undeformed body follows from (3.4) and using

(3.15) and (3.27) to (3.29)
2
(a),2 ()" . -
(ds™7) = (ds777) = 2(Ey, + [y 504K dX
(3.33) + 2(EKL + FLMKEM)dXKdEL

+ (EKL + ELK - ZEKL)d:Kd:L

In classical continuum mechanics, only the first term on the right involv-

ing hKL survives,

From (3.33) it is clear that when EKL’ EKL and FKLM vanish, there

will be no change in the arc length after a deformation. In such a situa-

tion, the body is said to undergo a rigid motion,
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4. MICROPOLAR STRAINS AND ROTATIONS

We now consider a special class of materials in which the state
of the microdeformation can be described by a local rigid motion of the
microelements. A large class of materials exist in which the micro-
material elements are dumbbell type molecules. Materials consisting of
rigid fibers or elongated grains fall into this category. For example,
wood, certain rocks, and minerals contain elongated molecular elements.
Among fluids, blood possesses dumbbell-like molecules. For such media,
the micromorphic material theory becomes much simpler. Mathematically,

this specialization is obtained by setting

(o) L™ T %k

or in the spatial notation ¢k2 = - ¢2k' In three-dimensional space, every

skew-symmetric second-order temsor ¢, can be expressed by an axial vector

KL
¢K defined by

(4.2) % T T ke

where EKLM is the alternating tensor defined as
€123 % f231 T %312 T Y13 % f132 T T3 7 L
ERIM T 0 otherwise

Expression (4.2) is a compact expression of

P = gp by = byge by = by

The solution of (4.2) for YL is given by

(4.3) ¢KL = -EKLMQM
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Substituting this into (3.15), we se2 that

(4.4)

In the classical theory we have the rotation tensor

[11]

1
) (UK,L - UL,K)

(4.5) Rer ™ "Rk

The axial vector Rk corresponding to this is given by

1 1
Re = 2 Skt ™ 2 Sxemly,Le
(4.6)

Ree =~ Skemt

Using (3.27) and (4.6)2, we find that

(4.7) U, ™ Bkt R ™ Bke T Sk

When this and (4.2) are substituted into (3.28) and (3.29%3 we get

4.8) i _
Ex = Exe * CamRy — %)

(4.9) Tem = ~Skum®N,u

When RM = QM’ wee see that EKL = EKL and FKLM = RKL,M and the
microstrains are no longer independent of the classical strains and

rotations. Thus the micropolar theory assumes that the classical rota-

tion RK is different from the microrotation. In the micropolar theory,

we have therefore six functions to determine, namely UK(g,t) and ¢K(X,t).
Once this is done, length and angle changes can be fully calculated.
For the micropolar theory, the spatial position of the ath point

g(a) ic obtained through (3.8), (3.18), and (4.3), i.e.,
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(4.10) (e xrzru-z e

From this it is apparent that ¢ represents an angular rotation of a
microelement about the center of mass of the deformed macrovolume element
(¢ is the moment arm from this centroid), Fig. 4.l1. Accordingly, we also

have

(4.11)

vy
n
IXE)]
[}
el
X
©

which shows that aside from a rigid body translation the relative position

1)

of  of a materia: point after deformation is obtained by translating
parallel to itself to the center of mass x of the deformed macrovolume
element, and then rotating it an amount Z x ¢. Since we are dealing with

linear theory, we also have
(4.12) ZmE gL x

where ¢=¢1is the spatial microrotation. 1In fact, we have the complete dual

to equations (4.1) to (4.10) which we record here for future convenience.

Sondlel) % ™ % “tn®mt 0 %o T "Ckem®n

(CELL! X¢e = %0 kin®n

Sod Tk © % “kim'me * Tkt T "fkam'm ’;' “kim“m, 2
(4=16) “,2 T %ke T %kin'm

(4.17) Sz ™ s CeanFm - O

(4.18)

Yklm N Ck2n¢n,m
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and

x(a) = X +

-~ -

(4.19)

1}

tu-gxe

Now consider the deformation of an infinitesimal vector

dg(a) = dX + dz at . ¢ Z. Upon deformation, this vector becomes

(4.20) dx'® = dx + de

~

dX + dE + u, dX, - dE x ¢ - E x 0, dX
By use of (4.7) and (4.6) we may write
(4.21) Wypd%e = Up, ki = Be¥dy * Rpgd%lp

™ B 0%, - xR

Similarly using (4.9)

)

* OondXy = ot v ik T Tk

For convenience we now introduce the notation

(4.22) FKM H PKLM:L
so that
(4.23) £ x @,Nde = -r(KM)dxMIK - F[KM]dxMIK

where indices in parenthesis (and brackets) indicate the symmetric (and

antisymmetric) parts. Carrying (4.21) and (4.23) into (4.20) we rearrange it into
(4.24) dx{® = dx + d= - (dX x R + dE x ¢ + dX x I)

By ¥ Ty )90

where we also defined a new microrotation vector I by
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1
(4.25) FK > EKLMFML , P[MK] = -EKLMFM

We name this vector minirotation for distinction from the microrotation

¢, 1If we carry (4.9) into (4.25)1, we also find

1 _ )
(4.26) g =7 GO 1%t %1%

Equation (4.24) reveals that the deformation of the vector
d¥(a) = dX + d:Z may be achieved by the following three operations:
(a) A rigid translation of dX + dZ from the material centroid

¥ to the spatial centroid x.

(b) Rigid rotations of dX and dZ by the amounts dX x (R + ') and

d:z x ¢, respectively.
(c) Finally, a stretch represented by the strains EKL and F(KL)
in (4.24).
The following special cases help to visualize these deformations:
(1) When = = Q0 we have
(4.27) dx'® = dx = dX - dX * R + E, dX, I
= dX - dX X R+ By AR T

This, of course, is a well-known theorem in classical continuum mechanics
attributed to Helmholtz (cf. Eringen [1962, Art. 10]).

(ii) When £ = constant vector

(4.28) dg(a) = dX - dX X R+ D)+ (B + T o)A T

Here, vl course, we have no rotation of dz - 0.

(111) ¢ = constant microrotation. In this case we have

F(KL) = F[KL] = FK = 0 and we obtain
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(o) _ -
(4.29) dx dX + dZ - dX x R+ dZ x ¢+ E dX I

In this case, the rotation consists only of a macrorotation of dX and a

microrotation of dz. We can also write it as

- (a) _ 5 e -
(4.30) dg = dx dx = dZ = dX < T - dZ xR+ T dX 1

(a)

In this form we see the difference between the deformation of dX and

that of dX of which the latter is known to us from the classical theory.
This difference, therefore, is the result of the composition of a mini-
rotation of dX, a macrorotation of d- , and the ministraining of dX

characterized by T The terminology of minirotation is being used

(KL)

for ' and ministraining for T Of course, R 1s the classical rotation

(KL)

for which we use the terminology macrorotation.

For the spatial representation the dual of (4.10) is

(4.31) X et e -utExy

From this, in the same way as in the case of (4.24), we obtain

(4.32) ax ()

~

= dx + d§ + (dx < r) + d& x ¢ + dx * Y)
- (e - Y295

where r is the spatial macrorotation vector defined by (4.15) and ey is

the spatial macrostrain tensor. The spatial minirotation vector y is given

by

(4.33) -2 Lo, £.- 06 .8
: Yo T2 fkem'me T2 %e, a5k Yk,ee

and

(4.34) e i e L S
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Finally, below we record the component form of various strains and

rotations in spatial rectangular coordinates x, y, z.

For the components

of the displacement vector u and micropolar rotation vector ¢ we write,

respectively, u, v, w and ¢x, ¢y’ ¢ .

Macrostrain tensor:

XX

(4.35) e =
yy

zZ2Z

W

9z

Micropolar strain tensor:

XX

(4.36)

yz

ZX

z

yy

N = N =

LY

yX

€
2y

Xz



Micropolar strain tensor of
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third order:

3¢ 3¢ ¢
B -—x- = - -——)£ 2 - .——x-
szx Yzyx ox '’ szy Yzyy ay °* szz Yzyz 9z
2y 2y 2y
{ae i) Yzxx = Yxzx ©  ax ° szy = -szy - 3y ° Yexz = “Yxzz T oz
nyz nyx ax '’ nyy nyy ay ° nyz nyz 9z
all other Yiom = 0.
Macrorotation vector:
P el
X 2 93y 9z
1 ,3u ow
(#-39) ry ol (az - ax)
1 ,9v u
272 (Bx - ay)
Microrotation vector:
(4.39) ? : ¢xi W ¢y~1 w ¢zl§
Minirotation vector:
Y -l[(.a.fl _aiz.)g _i¢_X£ _&E]
x 2 3y dz" °x y’y dz’z
¢ 3¢ 3¢ 3¢
=Xy oY .Y
(B Yy 2 [¢ IX 82)Ey axgx azgz]
Y .l[(m .a_fl)e _a;%. _8;"2.5]
z 2 X 3y’ "z 0X X y’y



-28-

5. GEOMETRICAL MEANING OF MICROPOLAR STRAINS AND ROTATIONS

The geometrical significance of various strain and rotation measures

(a)

can be understood quickly if we consider the change dg(a) in x as the

vector sum of three changes, namely,

(5.1) df(a) = d§ + dx + d§
where

(5.2) dx = dX - dX x R + EKdeK!L
(5.3) dy = -d¥ x [ + r(KL)deIL
(5.4) dz = dZ - dZ x ¢

Here dx is that known to us from classical continuum theory (cf. Eringen
[1962, Art. 6])). Accordingly, on the right-hand side of (5.2) the first
term dX represents translation of d§ from X to x; the second is a rotation;
and the last term represents the straining of the body. More specifically,
consider the vector dX at the point X of the undeformed volume element dV.
This vector after deformation becomes dx.

Writing (5.2) in another form

(5.5) dx = C .dX,
where

X
(5.6) C. =5 =L +U, I

we see that a parallelepiped with side vectors [ dX I dXz, and 13dx

1771 =2 3

after deformation becomes a rectilinear parallelepiped with side vectors
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C,dX,, C,dX, and C,dX,, Fig. 5.1. The stretch A<N) and extension E(N) are
defined by

5 . _dx] - dX

Gt fw Tty T T

Now calculate the extension of one of the sides of the undeformed parallele-

piped at X, e.g., Ildxl:

2 2
|dx| ¢, dX; - € dX; = C,,(dX,)

Hence

E(l) A(l) - 1= C11 -1
But we have
C11 =1+ 2E11
Thus
(5.8) Eqy = Mgy 1 = A+ 26, -1

From this it follows that

2
ZEll = (1 + E(l)) -1

For small extensions E( << 1, and this approximates to

1)

(5.9) Ell E(l)

which provides a meaning for the normal components Ell’ E22’ and E33 of the
infinitesimal strain tensor. For the shear strains ElZ’ E23, E31 we find

a geometrical meaning by calculating the change of angle between two side
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vectors such as Zldxl and ;zdxz. The angle 6(12) between these two vectors

after deformation is calculated by

cos o = €%, - 4% S
a2 e, Jax,Je,Jax, et~
11%22
2E15

Yl + 2511 V1 + 2522

m
The change of angle r(12) = e 6(12) between the original and the final

angle follows from this

2E12

Yl + 2511 vl + 2E

(5.10) sin T

(12) ~
22

For small strains Ell << 1, EZZ << 1 and sin r(12) = r(12) so that we have
the approximation

(5.11) r(12) = 2E12

which provides the geometrical meaning for the shear strain E ., . Similar

12

results are, of course, valid for E23 and E31.

For the rotation vector R we have the following geometrical inter-

pretation: Let N3 be a unit vector in the Xl,

becomes a vector n

Xz-plane at X. After defor-

mation, N at x. Bring n, to X and obtain its projection

3
Q; on Xl, X

3 3

-plane, Fig. 5.2. Let the angle between N x

2 3 3

63. We can show that (cf. Eringen [1962, Art. 10]) the average < tan 93>

and n, be denoted by

over-all angles ¢ that N, can make with the X -axis is related to R3 by

3 1

e

(1 + Ell)(l + E

(5.12) < tan 63> =

2
220 ~ E),
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where E and El are the infinitesimal strain components and R3 is

11 220 2

the rotation component in the X,-direction, i.e.,

3

For small strains (5.12) can be approximated to give

(5.13) < 03> 5 R3

which provides a geometrical meaning for R Similar interpretations are,

3
of course, valid for Rl and R2' Accordingly, for small deformations and
rotations, R represents the average rotation angle of the diagonal vector
dX of the undeformed parallelepiped.

The above discussion concerning the deformed parallelpiped with
diagonal dx at x may be used to provide a geometrical meaning for the

deformed parallelepiped with diagonal dy at x. To this end, from (5.3)

that of E .

we observe that T takes the place of the rotation R and r(KL) KL

Accordingly, the undeformed parallelep’ped with diagonal vector at X + =
with = fixed, undergoes an additional rotation I and length and angle

changes represented by the strains T at the spatial point x + £ that

(KL) 2

the point X + = occupies after deformation. This deformation takes place

with = being displaced parallel to itself. This deformation emanates pri-

marily from the parallelepiped with diagonal dX being constructed at the

point X + = with = fixed in-itead of being at X, as in the first case.
Finally, a parallelepiped with diagonal dZ constructed at X + =

with X fixed is rigidly displaced to a spatial point x + £ and rotated with

the microrotation ¢ at that point. Thus the final rectilinear parallelepiped

(a)

with diagonal dx at x + £ 1s constructed as a result of these translations,

rotations, and strains.
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The picture of the deformation in these latter cases is clarified

further if we write (cf. (3.1))

(a) -
(5.14) ax'® = (g + CAX, + xdZ,
where
o2 S 7 XKL

and XK is related to ¢LK by (3.15).

In the form (5.14), the deformation of a parallelepiped with diagonal
dX at X + Z and another one with d= are shown on Figure 5.3. According to
this picture, dX at X + = with fixed = becomes (QK + QK)dXK, Fig. 5.4, and
the one with diagonal d= at X + : with X fixed becomes XdeK’ Fig. 5.5. The
resulting deformation of dX + d:Z at X + - is the vector sum of these two

deformations, Fig. 5.3.
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6. LINVARIANTS OF STRAIN TENSORS

The state of local deformation at a point X + Z of a micromorphic

material is fully determined when the three material strain tensors

(6.1) E, ,E T

KL KL KLM

are given, With knowledge of these tensors, we can calculate length

(cf. (3.30)) and angle changes (Art. 5) and construct the spatial locations
of various material points in the body. Instead of the list (6.1), we may
of course employ the spatial tensors & e i and Yiom® An important
question in continuum mechanics is: 1If the material (spatial) coordinates
are rigidly rotated at X (at x), are there some functions of the material
(spatial) straln measures which remain unchanged? The answer to this ques-

tion is provided by the theory of invarianmts. 1In fact, the theory of invariants

is concerned with a more difficult question, namely: To determine the complete

set of invariants (called integrity basis) of a given set of vectors and

tensors which are unchanged under an arbitrary group of transformations of

coordinates. The minimal basis is a subset of these invariants which can

be employed to express all other invariants of a given set, The answer to

this question is important on two accounts:

(1) Constitutive equations must be form-invariant under rigid motions

of the spatial frame of reference. This is known as the principle of objec-

tivity. Investigation of this restriction on the constitutive equations often
requires knowledge of the invariants of constitutive variables such as strain
measures.

(i1) The Material symmetry places restrictions on the form of the con-
stitutive equations when the material frame of reference is transformed

according to some group of transformations. For example, when the material



has a plane of symmetry,

2 Wy

the constitutive equations should not change their

forms when a reflection of axes is performed according to the plane of

symmetry.

Similarly, for isotropic materials, the constitutive equations

remain form-invariant under the full group of orthogonal transformations

of the.material frame of
symmetry axes, the group
The invariants of

three dimensions are:

reference. For anisotropic materials with some

of transformations 1is less restrictive.

a symmetric second-order tensor (such as E, ) in

KL

| 4 :—l- - -
(6.2) IE = EKK , IIE =3 (EKKELL EKLELK) . IIIE : det EKL
Instead of this set, one may also employ
tr § EEKL
(6.3) tr E° ZE, E
~ KLLK
tr E3 ZE. _E. E
< T7KLTLM MK
The above two sets are related to each other. In fact
2 2
tr E = IE 5 tr t.= IE 211E
(6.4)
tr E7 = 13 - 3I_I1_ + 3111
< E E"E E

The determination of the minimal integrity basis of (6.1) is much more

complicated.

higher-order tensors have not been studied to date.

present theory FKLM

always occur in the form T

In fact, to our knowledge the basic invariants of third and

Fortunately, in the

KLM-L - FKM so that we may

instead search for the invariants of

(6.5)

t y T

hKL * "KL KL
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For the micropolar theory, the situation is simplified further
since E(KL) = EKL' The invariants of two symmetric and two antisymmetric

second-order tensors

r

(6.6) k) (kL) (ke

E(KL) =B

would be sufficient for this purpose. The integrity basis for the proper
orthogonal group for such a set has been studied by various authors. Below
we give a table for the construction of these invariants. For the sake

of simplicity, we introduce the symbols a, b for the symmetric tensors and
u, v for the antisymmetric tensors. In Table 6.1 we give the invariants

of these tensors in ascending order of the integrity basis of various sub-
sets of a, b, u and v. The integrity basis of the quantities listed in each
entry of the first column includes all entries on this row and the integrity
basis of all subsets of these quantities. Thus, for example, the integrity
basis for a, b in the second row includes that of a and b, namely, tr a,

tr 92, tr §3, and tr b, tr 92, tr ?3. Also an asterisk (*) placed on the
products indicates that we include in this list all other products obtained
from this by cyclic permutations of the symmetric matrices. A dagger (1)
indicates the inclusion of all quantities obtained by cyclic permutation of
the skew-symmetric matrices Tﬁus, for example, ab* means the inclusion of

the set

ab , ba

Similarly, gzyq+ means the inclusion of the set

2

u“vat , vgza+

For other details and more extensive studies on invariant theory see Spencer
[1966]. Since we will be interested, generally, in a linear theory, many
entries in this list will not be needed in the construction of the constitutive

equations.



TABLE 6.1

Matrix products whose traces form the

integrity basis in the proper orthogonal group

Matrices Matrix Products
2 3
a a, a ; a
*
2 2 2
a, b ab; ab~ ; a'b
2
o u
2 2 2 2 2
- K g gy o g U e
*
2 % 2.2 2 % 2.2 * 2
u, a, b uab; uab ; uab ; uaba; uaba; uab;
*
22 % 2 2 2
uab ; uaub; uaub
4, Vv Y
.1.
2 2 2t 2
u, v, @ uva; uva j uva ; u va ; uava
2 * 2* 2,2 2, %
u, v, a, b} uvab; uvba; uva'b ; uvba” ; uva’b"; uvaba ;
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7. VOLUME CHANGES

Here we calculate the change of volume with deformation.

element dVO = dxldxzdx3 at X +

macrovolume element and one dVO

with fixed

~

d= d'Zd 3

material minivolume element.

becomes dv given

(7.1) dv = JdX.dX, dX

1772773

(7.2)

jdz dz,dz,

where J and j are

tively, i.e.,

(7.3) J

(7.4) j = det (ka)

-
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A volume

will be called a material

with fixed X will be called a

the jacobians of deformation with =

= det (¥ Xy k)

After deformation, dV, becomes dv and dVo

0

and X fixed respec-

To obtain the ratios of deformed volume elements to those of undeformed

ones, we need to calculate the jacobians J and j.

Since the determinant of

the product of matrices is equal to the product of the determinants of matrices,

we have

J = {det [(xk K )(x

+
XM, KM

(det (xk,ka,L +
Upon using (3.5) and (3.6) this becomes

(7.5) J = {det (CKL + PLMK'M + KNLEN

+
k,L

XkN, LN

X LXKM, KM T

+ T

y1Ht

1/2

)}

+
X RN, LN T Xk, KRN, LEMON

=2} 1/2
PMK' QVL CpQ MmN
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where

7.6 'cl z X

() pq - *p,k%q,k

is the inverse tensor to C_.. In the calculation of the last term on the

PQ
right-hard side, we employed

XL, n = Tk

which follows from (3.7).
The above result (7.5) is valid for a general micromorphic material
and can be further simplified, We are, however, interested only in a

linear theory. In this case (7.5) can be approximated by

- 1/2
J = {det [6KL + + ZF(KL)]}

ZEKL
Expansion and linearization of this gives
(7.7) J =1+ EKK + rKK

Thus the macrovolume change with fixed Z, to a linear approximation, is

given by
(7.8) E%l - 1l=1¢trE+ (Vx2¢) =
0

where we used (4.9). Here the first term on the right-hand side is the
classical expression of the dilatation,and the second term is the addi-
tional volume change due to microdeformation.

Similarly, we can calculate the minivolume element dv by determining

j given by (7.4). 1In this case

(7.9) 3= ldet G )1t



=39~

For the linear theory from (3.15) we have

Xek = Oy + S S

Hence (7.9) to a linear approximation is

V2 214h e, +00h)

(7.10) J = [det (8, + 0 + ¢ )] KK

KL LK

For the micropolar theory ¢KK = 0 so that we have

—d¥ _ 1= 0@k
v,

Hence, in the linear micropolar theory there will be no minivolume change.

A minivolume (for X fixed) rigidly rotates without altering its value.
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8. COMPATIBILITY CONDITIONS

The strain tensor ey and micropolar strain tensors €2 and Yy om

are expressed in terms of the displacement field uy and microrotation

field ¢k by
(8.1) e = 1 (u +u, )
kg -2 Yk, T Yek
Lol ke T Y,k t Cekn'n
]
B Ykim ek2n¢n,m

Of these, (8.1) is the eulerian linear strain tensor known to us from the
classical theory and (8.2) follows from (4.17) by use of (8.1) and (4.15)
and (8.3) is identical to (4.18). When the six quantities u and ¢, are
prescribed, these strain fields are determined uniquely through (8.1) to
(8.3) by mere substitution. If instead the six strains €y nine micro-
strains € g and nine non-vanishing components of Yo 2T prescribed,

then the determination of the displacement and microrotation fields requires
the solution of twenty-four partial differential equations (8.1) to (8.3)
for the six unknowns U and ¢k. Such a system is over-determined and

restrictions must be imposed on e These conditions are

ke €ke 0 209 Yen-

known as the compatibility conditions. For the classical strain tensor € o

the compatibility conditions are (cf., Sokolnikoff [1956]):

$o' e, mn T %mn,kt T %km,2n T %tn,km -

If we notice that

I~

(8.5) e (e, + e )

k- Sk T 7 ke Lk
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then (8.4) can also be written as

(8.6) 0

cke),m T S(mn),kt T S(km),fn ~ €(2n),km -

An alternative derivation of (8.6) is instructive: To this end chrough

(8.2) we calculate the displacement field u from
0
(8.7) u =yt fc(e:gk + Elkm¢m)dx1

0
where is the value of at one end x° of an open curve C in the body.
Yk Yk m

Integrating by parts the second term under the integral, we also write
(8.8) = e, o (x, - x0)+ [ e, +e,, (x, -x%)¢  Jdx
: T % T ke e T % o ik T Cpkmt e T % ¥ 119Ky

For the displacement field u_ to be independent of the path C followed

k

between the points X and x&, the integrand must be expressible as a

total differential, i.e.,

xz)¢ = F

€ m,1 k,1i

1k - Soen g "

where Fk(§,t) are single-valued and possess continuous partial derivatives

with respect to xi,through second order. From this it follows that

Consequently

- x9%)

) g1 T ™y = % 0

¢ l)om,i

ik,i = Eokm s g€ n,3d,1 =

Expanding the second term and using (8.3) we obtain

(8.9) € - €

ik, %0

jk,i T Vikg T Yk
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These are the necessary and sufficient conditions for the displacement field

u_to be single-valued and continuous in a simply-connected region. Elimina-

k
ting y from (8.9) by differentiating and using (8.2) and (8.3), we obtain

(8.6) again.
A similar method can be applied to Yklm as follows. First we solve for

¢r o by multiplying both sides of (8.3) by € Hence

kir®

X 1
(8.10) ¢ =3

€
r,m kerkzm

Integration of (8.10) along a smooth open curve C gives

0 1
¢r x ¢r + 2 % Ekerklmdxm

The condition of single-valuedness for @r now reads

(8.11) ) =0

eer Ykam,n ~ Ykin,m

Thus we have proved the following.

Theorem: The necessary and sufficient conditions for the integrability

of the system (8.1) to (8.3) for a simply-connected domain is the satisfaction

of the compatibility conditions (8.4) and (8.9) and (8.11)%.

We note that the terms outside the line integral in (8.8) represent

rigid body deformation.

*
Condition (8.9) was obtained by Sandru [1966). For the general nonlinear
theory of micromorphic materials, the proof was given by Eringen [1967].
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9. SOME SPECIAL DEFORMATIONS

In this section we present a few special deformations for illustrative
purposes.
(1) Rigid Deformation. The deformation of a body is called rigid if

(a) (a)

the distance between every pair of points X and Y in the body remains

unchanged. From (3.33) it is clear that the necessary and sufficient condi-

tion for the rigid deformation of a linear micromorphic body is
(9.1) E=E=0 , [=0

Alternatively, in terms of the spatial measures of strains

(9.2) e=e=0 , y=0
For a micropolar body EKL = 0 implies
(9.3) Ug = R X, + By

where RKL is an arbitrary skew-symmetric tensor and B, is an arbitrary vector,

K
both of which are independent of X. The condition rKL = 0 implies that ®K be

independent of X. Finally EKL = 0 gives

(9.4) @K = RK
where
(9.5) -1

: Rg = 7 fxmi

is a rotation vector independent of X.

(ii) Isochoric Deformations. The deformation will be called macroisochoric

if the material macrovolume remains unchanged. It will be called miniisochoric

if the minivolume is unchanged. The necessary and sufficient condition for
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macroisochoric deformations according to (7.7) or (7.8) is

(9.6) EKK + I‘KK = (

The condition for miniisochoric deformation follows from (7.10). Since,

for the linear micropolar bodies ¢, = 0, we see that the linear micro-

KK

polar bodies undergo only miniisochoric deformation. We note that, in

general, this is not true for general micromorphic materials.
For the condition (9.6) to be valid for all Z, it is necessary and

sufficient that

(9.7) E..=0 , I, =0

(111) Homogeneous Strain. The state of strain in a body will be called

homogeneous when the deformation is linear and homogeneous in the position

vectors X and : of the material points, i.e.,

(a) _ -
(9.8) X = QKXK + ?K”K

where D, and DK are constant vectors. In terms of the components of these

K

vectors, (9.8) is equivalent to the system

9.9) S T D

(9.10) & = Dkx‘x

where DkK and DkK are constants for static deformations and functions of time

only for the dynamical motions and

(9.11) D = Dy, iy
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Equation (9.9) is the expression of homogeneous strain in classical continuum
mechanics., The deformation described by this set carries straight lines into
straight lines, ellipses into ellipses, ellipsoids into ellipsoids. The

microhomogeneous deformation (9.10) is new, and it possesses the same kind of

properties with respect to Z. For the micropolar body, U, , can be replaced

kK

by a single vector U given through the solution of

(9.12) DL = S Gy

namely

. S '
(9.13) DM = =4 ekLMDkL

Equation (9.12) results from equations (3.15) and (4.3) with ¢ = 0. Thus the

microhomogeneous deformation can also be expressed by

x D

-~

(9.14)

[l
]

{1
1

1111

where the vector U is independent of X and of course

iHr)

The material deformation tensors follow from (3.5) to (3.7) and (9.9)

and (9.10) with DkK = Xk Thus
kL = “kkPL

(9.15)
¥ = D D I =0
KL kK kL ’ KLM

It is now clear that the strain measures are homogeneous. For a micropolar

solid we use (9.12) so that

(9.16) Yer = Dik ok

where we put



46—

Dk = SkrPuk

Below we give several special cases:

(iiia) Uniform Macrodilatatjon. In this case, D is a diagonal matrix

having the same entries, i.e.,

o

(9.17)
, 0 <D ¢ =

'
o O

o o ©
c o o

The deformation tensors in this case take the forms

2
(9.18) Cop = D0x v Yo = D0 8y » Ty =0

Hn

The deformation carries a parallelepiped having edge vectors IKdXK at X +

to one with edge vectors DdXK{ Fig. 9.1. The ratio of the length of an

K’

edge to its original value (the macrostretch) L( is therefore given by

K)

L(K) =D

The angle between any two edge vectors of the deformed macroelement is 90°.
The deformation carries a macrocube of unit volume to a macrocube of volume
D3. The microelement changes according to the values of DK' From (9.16),

for this case, we have

(9.19) e = D = frindy
From this it is ciear that
(9.20) wll = sz = w33 =D , WKL = -EKLMDDM , (K+#1L)

Thus, the microstretch % X the ratio of the edge vector of the deformed

(K

microelement to that of the deformed element, is given by



=

Hence, the edges of the microelement are stretched the same amount as those

of the macroelement. For D = 1 we have no macrodeformation or microdeforma-
tion. However, the microelement undergoes a rotation described by P. For

the general micromorphic materials, the situation is much more complicated

and it is possible to have microdeformations even when the macrovolume remains
unchanged. This situation is, of course, a familiar one in molecular theories
of crystal lattices.

(iiib) Uniaxial Strain. Consider the homogeneous strain characterized

(9.22) . 0 <D < w

'

1
o © o
o = o
4~ © O

In this case, for a micropolar solid through (9.15) and (9.16), we get

2 -
D0 0 D -0 D,D
9.23 - =
( ) C 0 1 0 , ¥ 2o 1 -D
0 0 1
__DZD Dl l-

Macrostretch L(K) and microstretch Q(K) are
by =P 0 Ly =l =1
(9.24)
L,,.=D , &, =8 _ =1
(1) (2) (3)
For Dl = 02 = 03 = 0, we have the classical uniaxial strain according to

which a bar of length dX, after deformation becomes a bar of length DdX

1 1

Fig. 9.2. For non-vanishing DK we see that the microelement is stretc'.ed

ly the amount D in the X, direction in addition to having a rotation. The

1
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geometry becomes particularly simple for the two-dimensional case for which

we have

(9.25) D = , C= y ¥ o= 3
0

A sketch of the deformation is shown on Fig. 9.2. The macroelement OACB

after deformation becomes OA'C'B elongated an amount (D-1)dX, along the

1

Xl-axis with no change in the lateral directions. The microelement Cacb

is stretched by the amount DdE1 in X direction becoming Da'c'b'. After-

wards, a rigid microrotation occurs about the X3-axis at C. The final
shape of Cacb is marked by Ca''c¢''b'". For the general micromorphic materials,
it is possible also to have microstretches independent of the macrodeforma-
tions.

Generally, when a bar is stretched in one direction without any

constraints on its sides it will also change its lateral dimensions. This

situation is characterized more realistically by

D, 0 0
(9.26) b= [0 D,0
0 0 D

In this case the state of strain is called simple extension. For simple

extension we have

2 0 o | [ 5. 00, DD
1 1 173 172
2
9-2 = = =)
(9.27) ¢ 0 1)2 0 , Y 0103 D, Dle
2
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From (9.27)1 it is clear that a macroelement in the shape of a rectangular
parallelepiped after deformation becomes another rectangular parallelepiped
A microelement

with its sides elongated proportionally to D D2, and D

1’ 3°
in the shape of a rectangular parallelepiped changes its sides in the same

proportions, however, it also rotates.

(iiic) Simple Shear. In classical continuum mechanics a homogeneous

strain characterized by

1
(9.28) D= |0
0

o = w

0
0 . -0 < § <
1

is called a simple shear. Here S is independent of XK. The spatial position

x&?) of any material point X + Z after deformation is given by
xi“) = X, + S, + E 4+ D,5, - Dy,

(9.29) xéa) a X2 + 52 + 9351 - 0153
xga) =Xy + 2,4 D)5, - 0,5

In the case of DK = 0, simple shear rotates X1 = const. planes rigidly about

their lines of intersection with X2 = O-plane, by an amount equal to the

angle of shear y given by
(9.30) Yy = arc tan S

The X2 = const. and X3 = const. planes are unchanged (cf. Eringen [1962, Art. 15]).

The deformation tensors C, Y, and | are given by
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(9.31) - - —
1 S 0 F 1 -03 02
C=1|Ss 1+s2 0 . Y = (s+1)l>3 1-sD3 svz-Dl
-0 0 IJ s -02 Dl 1 J
['=0

From (9.31) we see that even when there is no macroshear, that is when S = 0,

we shall have a microrotation prescribed by the microdeformation tensor

(9.32) vy o= |3 1

The picture for a plane microdeformation, in this case,Ais similar to the
one described by Fig. 9.2.
(iv) Plane Strain. In classical continuum mechanics when the defor-
mation of a body is identical in a family of parallel planes and vanishes
in the directions of their common normal, we say that a state of plane strain

exists. This plane strain is thus characterized by

(9.33) X, = xk(xl’XZ) , (k = 1,2) , Xy = X3

For the micropolar deformations, we define the state of plane-micropolar strain

similarly. Using (4.11) and setting Qli @2 0, ®3 ® we have

£1 = El = ¢(X1,X2):2

(9.34) E, ==+ @(Xl,XZ)E3
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Thus, in a plane macrostrain and microstrain the deformation is fully

prescribed when the two unknown displacements

U, (X1,X))

(9.35)

"

*
1

o

UZ(xl’XZ)

and the microdisplacement o(xl,xz) is determined. The field equations
should, therefore, consist of three partial differential equations
replacing the two equations of the classical theory. This, as we shall
see, is the case (cf. Arts. 25 and 26).

The spatial deformation tensors for the plane strain are

Cp G2 O o ' O

ol €= €1 G2 Of » 1= T2y Y O
0o o0 1 0 o0 1

Tyow = “Toay = ~%oy y (M=1,2)

Equations (3.27) to (3.29) and (4.3) provide the relations between defor-

mations, tensors, and strains (or displacement vectors):

= 6 =
CKL KL + 2EKL 6KL + UK,L + UL,K

(9.37)
ke T ket %k T ke T Gkt ULk

P oo
kLM = TCkLn M

Thus, for the strain tensors E and EKL we have

KL
E;g B O B Ep O
(9.38) E= |E,, Ep, O , & =|E,, E, 0



when

9.39) &y 73

1 1 2
E.p =By =5 G+
12 21 =2 8X2 axl
v
2
L =Vt =t
12 axl
£, -2
]
22 ax2

=52~
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10. MOTION, MICROMOTION, MATERIAL DERIVATIVE OF TENSORS

A material point at X + Z at time t = 0 is carried to a spatial

(a)

point x + § at time t. The motion of this material point in a body

is described by one parameter family of transformatioms.

-

(10.1) ) w x(x,0) + £(%,5,0)

where x(X,t) is the place occupied by the center of mass X of a macro-
volume element dV + dS at time t and £(X,Z,t) is the relative position
of the point X + = at time t with respect to the center of mass. For

micromorphic bodies we have (3.9) or
(10.2) x(X,£) = X + u(X,t)

for x(X,t) and (2.9) for £(X,Z,t). For micropolar bodies, (10.2) remains

valid but (2.9) is replaced by (4.11), i.e.,

(10.3) E(X,2,t) = x 9(X,t)

tin
ot

In these expressions U(X,t) and ¢(X,t) are respectively the macrodisplace-
ment vector and microdisplacement vector. The parameter t is real repre-
senting time.

According to the axiom of continuity and indestructibility of matter,
the inverse motions X(x,t) and =(x,§,t) are assumed to exist. Thus we

may also write
(10.4) X = X(x,0) + 2(x, ,0)
where : is given by (2.13) for micromorphic bodies. We also have

(10.5) X(x,t) = x - u(x,t)
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However, for micropolar bodies (2.13) is replaced by (4.12), t.e.,

(10.6) = £+ £ x ¢(x,t)

tn

For displacement vectors, we employ the same symbol u and ¢ both in material
and spatial descriptions. However, in the former case u and ¢ are assumed

to be functions of X and t, and in the latter case functions of x and t

since we may substitute X = X(x,t) for X in u(X,t) and ¢(X,t) to pass from
material description to spatial descriptions. Single-valued inverses X(x,t)
to x(X,t) and Z(X,§,t) to § = §(§,§,t) are assumed to exist at a neighborhood
of X at all times except possibly some singular points, lines, and surfaces
in the body. A sufficient condition for this is the continuity of partial

., and

derivatives of these functions with respect to Xk

(10.7) det (xk K) # 0 det (¢k K) 0

in some neighborhood of xy at all times. We assume that such 1s the case.
In the kinematics of continuous media, the time rates of vectors and
tensors associated with material points play an important role.

Def. 1. The material derivative of any tensor is defined as the

partial derivative of that tensor with respect to time with the material

coordinates xK and EK held constant. The material derivative is indicated
either by placing a dot on the letters or by D/Dt. Thus, for example,

DF aF (X, 1) |

. DR
Fe(X.8) = ¢ at |,
X
% ) = ka ) 3fk()f,t) |
(10.8) k'Y T Dt at Ix
. Dg 3t | .
.k _ Tk - :
k Dt~ ot | xg (Xs 0 2y

where subscripts attached to a bar indicate that those variables are held
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constant during the differentiation. Since through the centroidal motion

we have
(10.9) X = xk(g,t) or XK - XK(§,t)
we have
fk(’f’t) = fk()*(()"(’ t)nt)
so that
- afk . afk axl(g,t)
3 at X axz ¢ at X
In short, without ambiguity we write
. Df af L]
5 gl il
(10.10) fk = Dt 3t + fk,lxl

The first term on the extreme right of this equation represents the time
X

rate of change that occurs at a placejat time t. The second group of

terms is known as the convective change. These arise from the motion of

the material point X through the place x.
In the case when the tensors involve the macromotion in the material
differentiation, we also consider the relative location vector EK held

constant, cf. (10.8)3. Another example is provided by differentiation of

(4.11).
(10.11)
. ach(x,c)
gmcEre or Gt egd T
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11. VELOCITY, ACCELERATION, MICROROTATION, SPIN

Def. 1. Velocity is the time rate of change of the position vector

f a material point. Thus

(11.1) v ExX,)  or v =%

where X is held constant. Since x = x()_{,t) we have

ax(X,t) c
Pe w— s x(X,t)

Note that in a body with microstructure, )5 is the position of the center

of mass of a macrovolume element and it may or may not be actually occupied

by a material point. Nevertheless, in defining the time rates of vectors

and tensors associated with the body, we refer to )S as the material point.
Upon replacing X by (10.9)2 we also write

(11.2) v o= x(X(x,t),t) = x (x,0)1, = v (x,0)1

where 1 are the spatial rectangular unit base vectors. This equation

k

defines the velocity field v, at a spatial point x at time t. This is the

k
eulerian concept of the velocity field which is prominent in hydrodynamics.
For the lagranglan viewpoint, we express the velocity vector in the material

frame of reference XK Thus

i 3xk(?_(,t) s

@.3) vm Ne@etly o VT by

Def. 2. Acceleration is the time rate of change of the velocity

vector of a material point. Thus

(11.4) azvy or a =y, 2= e——
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For the lagrangian viewpoint we have

(11.5) as= AK()S,t)IK X AK H T
and for the eulerian viewpoint

ka v
(11.6) ak s e —3E~+ vk,2v2

Here we notice the appearance of the convective terms vk’lv2

The velocity v and acceleration a defined above are the kinematical
quantities describing the motion of the center of mass X in a macromaterial
element V + S. We now proceed to obtain the relative velocity and accelera-
tion of a material point X + :Z with respect to the center of mass X. For

these, we take the time rates of the relative motion for a micropolar body

given by (2.9), namely,

(11.7) & = xg (Xt) =
Thus
€= (%003

(11.8)

[ B

= Z(K(),(’t):x

Alternative expressions are obtained by replacing EK by 1ts expression

s X
Thus, for example,
(11.10) g = yk(g,t)sk or &= Vb
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where
(11.11) v (%,8) = X GBI (5,8) vy, = Xoxkk

It is understood that X appearing in the argument of iK is also replaced
by (10.9)2.

Def. 3. The three vectors v, defined by (11.11) are called the

k

gyration vectors, and their components v&k form the gyration tensor.

When the gyration tensor is given, we can calculate the eulerian
microvelocity £ by (11.10). For the microacceleration in a similar fashion,

we obtain

E = b+ b St Yk

where we used (11.10)2. Thus

(11.12) E = gk(§,t)£k or &k = ukliz
where
(11.13) gk(g,t) EVet vV or oy Fov o tvovo

Def. 4. The three vectors gk(g,t) defined by (11.13) are called

the spin tensor.

(a) (@)

The total velocity v and acceleration a of a material point

X + = can now be calculated by

(11.14) v e

W
L}

<
+

Bk

(11.15) 2@ -avamvrag
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For a micropolar body, these expressions are modified by use of (4.4) and
(4.14). Thus, for example,

(11.16) v

ke = Sk b CkinEram®MOm

For the linear theory this is simplified to

(11.17) Vee -ek2m¢m

Upon introducing an axial vector Vi called microgyration vector, by

(11.18) \Y v

1
kT2 Skim'mt ke T "fkem’m

we see that

(11.19) v, =

and (11.10)1 now reads

(11.20) E=-fxy

~ -~

Similarly, one can calculate f£. An alternative approach that may be instruc-

tive is through taking the time rate of (11.20)

+ (£ xv) xv

-~ -~ -~

1 -

(11.21) §=-§X\3-§XY=-§x
I1f we recall a vector identity

(11.22) (@axb) xc=1(a-c¢c)b- (b~

N
~—
R

the above expression can be written as

(11.23) E=-f xv+ (- Vv - (v: Vg



whose component form is

(11.24) Ek - aklcl
where
(11.25) a, , = -¢ v +vv, =-vwvid

ke kim m k 2 mm ki

It can be seen that this is identicol to (11.13)2.
The total velocity and acceleration vectors of a material point

X+

-~

L § 3]

in a micropolar body can now be expressed, respectively, by
(11.26) y(a) - x(a) = x+tE=v-Fxy

Xy (Ex W

-~

1 .

arzn 2 -y @,k

Here v and é refer to the centroidal point of the macrovolume element,
and the remaining terms on the extreme rights of (11.26) and (11.27) are
the relative velocity and acceleration about the centroid. Equation
(11.27) can be linearized fu.ther by dropping the triple vector product

term on the extreme right.
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12, MATERIAL DERIVATIVE OF ARC LENGTH

In continuum mechanics, the time rates of arc length, elements of
surface, and volume in the deformed configuration are often required.
Here we prepare the groundwork for this, while at the same time introducing
certain new concepts essential to the study of motion.

Fundamental Lemma 1. The material derivative of the displacement

gradient is given by
D .
(12.1) Dt Kik) T KGR TV, e%eK

The proof of this is immediate since D/Dt and E)/BXK can be exchanged, i.e.

D .
D
Dt [xk’K(X.t)] - (_DT)’K' 5K " Vi, a5, K

where we used X = vk(g,t) and the chain rule of differentiation. Another

useful expression that follows from (12.1) by multiplying it by d)(K is

(12.2) d)ﬁ( = vk’zdxg

A corollary to Fundamental Lemma 1 is

D
(12.3) Dt (Xx,k) = X0V Lk

which is proved by differentiating xk,KxK,Q = 6k2' Thus

xk_#"x,z*’i,xm'o

Now multiply this by )(L K’ This gives (12.3).
»
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Theorem 1. The material derivative of the gquare of the arc length

ds2 is given by

2
(12,4) ds ™ = dezdxkdx2
where
(12.5) d , = v ed@ 4w )
. k& (k,2) ~ 2 “Tk,¢ L,k

is called the deformation rate tensor.

To prove (12.5) we take the time rate of d92

.
—— -

s .
- em— = (‘.\' =
ds‘ De (dxkdxk) 2 K dxk 2vk’2dxkdx2

= g ¥ Y0 I

Hence the proof.

In the material description, (12.4) can be written as

2
L T TR R o

If we use

ds” = CrrdXgdy = gy * 2By )dXedXy
then
(12.6) as? . Co % dX = 2E, dK dX

By comparing this with the foregoing expression, and since d e and CKL and

k

EKL are symmetric tensors, we find that
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(12.7) Cer ™ 2Bk ™ 2% k%L

This is the material derivative of the lagrangian strain measures C and E.
When d = 0 we have D(dsz)/Dt = 0, Conversely, when for arbitrary
dx, D(dsz)/Dt = 0 we must have d = 0. Hence we have

Theorem 2 (Killing). The necessary and sufficient condition for

the macromotion x(X,t) to be rigid is d = 0.

Note that macrorigid motion does not imply microrigid motion. As
we shall see helow, the microelements may undergo non-rigid motions even
though macroelements may be moving rigidly.

Fundamental Lemma 2. The material derivative of the micromotion is

given by

(12.8) Xk (Xo8) = Vo Xop

This result follows from (11.11)2 by multiplying 1t by Xgep, and using (2.11)2.

A corollary to (12.8) 1is

@2:9) Xer = KoV

which 1s obtained by taking the material time rate of (2.11) and multiplying

the result by ka'

Theorem 3. The material derivative of the microdisplacement gradient

ka,L is given by

L

(12.10) Dt Mek,L) © %K,L T VkeXak,L * Vke,n¥eK*n,L

To prove this, we take the partial derivative of (12.8) with respect to XL

and exchange D/Dt and B/BXL since this is permissible.
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A corollary to this theorem is

(12.11) A" = vkdem + vkl,meldxm

which is pvoved by taking the material derivative of

(12.12) dEk = XkK,LEdeL cti XdeEK

and using (12.8), (12.10), and £k = XkKEK'

Theorem 4. The material derivative of the square of the arc length

<a))2

(ds is given !_311

—D-[(ds(a))zl = - i + ¥ + (v +v )E ]dx dx
Dt k,2 " Ve,k kr, 2 T ar,k’ %%y

(12.13)
+ 2(v’L’k + v, +-\)lr’k£r)dxkd£2 + (Vkl + vlk)dskdi2

To prove this, we take the material derivative of

(a),?2
(12.14) (ds ) dxkdx + 2dxkd£k + d&kdEk

k

and use (12.2) and (12.11).

If we now introduce the microdeformation rates

(12.15) b

\Y + v

ke~ ke T Vek

(a)

- (a)
(112~ 18) feam - Vktm ' %kt T Vke,a¥

1 Eringen [1964c¢]
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equation (12.13) can be expressed in the form

L 1 oas®,2
Dt [(ds ) ) = Z[dkl + a(kz)]dxkdxz + 2(bkg + alk)dxkdcl
(12.17)

+ 2[boygy 4y, ld5dE,

In a region of a micromorphic body when
(12.18) d=Q , b=0

we have the general solution

(12.19) v, = w X +Db , Vo, =W

k k™R k k2 k2

where W is an angular velocity and bk is a velocity, both of which are

independent of x, and

(12.20) g + Wore = 0]

Upon substituting (12.19) into (12.16), we see that aom ™ 0. Conversely,

2
we can show that the vanishing d and b is also necessary for D[(ds(a)) ]/Dt =0,
Hence we have proved

Theorem 5. The necessary and sufficient conditions for a micromor-

phic body to undergo microrigid motion are

(12.21) b=d=0

This theorem replaces the well-known Killing's theorem (Theorem 2 above) for
micromorphic bodies.
For linear micropolar bodies, considerable simplification is achileved

in the foregoing results. To this end we recall (4.4) and (11.18)2, namely,

(12.22) Xk ™ Ckk T Ckxm®M 0 ke T “fkim’m
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Substitution of these into (12.8) and (12.10) and linearization gives,

respectively,

~

k) *Shmetn 0 WKL T Ewke U EL

XKK

The expression of (12.11) for a linear micropolar body is

i.

(12.24) dg £.d

'm Eklmvm,r 9%

‘A

Ck = "fkam

or in vector notation

(12.25) dE = -d§ x v - £ x Y‘rdxr

The material derivative of the square of the arc length for this case is

D PPN O I
(12.26) Dt [(ds ) ) 2[dk2 + a(kl)]dxkdxl + Z(bkl + alk)dxkdé2
where
. _ (a) . .
(12.27) bkl - vl,k ‘kem’m  *  %ke B ekrme,EEr
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Def. 1. The time rates of various strain measures are the same

as their material derivatives. Thus, for example,

nNe
i g 19 A =
KL -~ Dt ’ k% - Dt
. D D
(13.1) - 2 ; skt
* KL Dt ’ kit Dt
T DTy AT

KLM ~ Dt » Yeam Dt

We now proceed to give explicit expressions for these quantities.

Theorem 1. The lagrangian strain rates are given by

(13.2) Bgr = YRn*c E%0,L

(13.3) Eer = Ba%k, KXaL

(13.4) Teim = P, k%L, M ¥ 2kin®k, X0 %m,M

The proof of (13.2) has already been given in Art, 12,

we calculate the material derivative of

(13.5) EKL - wKL = 6KL = xk,kaL = GKL

Hence

Bel ™ kL T %K %kt %K L

To prove (13.3),

Upon using (12.1) and (12.8) we obtain (13.3). The proof of (13.4) is

constructed similarly by taking the time rate of
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(13.6) TkiM © %, K*kL,M

and using (12.1) and (12.10),.

Theorem 2. The eulerian strain rates are given by

(13.7) ey =dy = (o vy o * €eVn K’
(13.8) e = by = CCrp¥me * €mz"m,k)
WL Ykim © " %am M ekrarlm - (Yklrvr,m + Ykrmvrl + lemvr,k)

The proofs of these are somewhat lengthy and will not be given here. They
are obtained by differentiating the expressions for the strains and using
various results obtained in Art. 12. For the proof of (13.7) see Eringen
(1962, Art. 22]), and for (13.8) and (13.9) see Eringen [1967].

Equations (13.2) to (13.4) and (13.7) to (13.9) indicate that the
eulerian strain rates are not the same as the deformation rates. If at
time t the medium is unstrained and the motion is just beginning, we can

set x = X and § = Z so that

= 5 8
Egp (X200 = 4y Sxbor
(13.10) Ee (X,0) = b 6,6
= £
P Ze0) = a0 6 ear S

and

e (%00 = dy

(13.11) £ (%,0) = b

Wka(x’O) = Tham
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For the infinitesimal deformation theory, the terms enclosed in parentheses
on the right-hand side of (13.7) to (13.9) can be neglected. Therefore,

in this case (13.11) should be valid approximately for all times, i.e.,

ey (%08) = dpy

(13.12) € (8) = by,

Yklm(¥’t) - T em
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14, EXTERNAL AND INTERNAL LOADS

A material body subject to the external and internal forces undergoes
a deformation. These forces may be of mechanical, electrical, chemical,
and other origin. Here we are only concerned with the mechanical forces.
In the particle mechanics of Newton, the force F acting on a particle is
considered to be a function of the position of the particle x, its velocity

v, and time t, i.e.,

(14.1) F = F(x,v,t)

-~

When we have a collection of particles, then for each particle we may write

-~

(14.2) F = Ea(ga,ya,t) , (a=1,2,...)

In a volume element AV of a continuum, we have a large number of particles
interconnected with such forces. If the particles of a continuum are not
free to move independently, then the interparticle forces are balanced among
themselves in pairs. This then places restrictions on (14.2) so that the
number of independent forces is much smaller than the free collection of
particles. In conformity with these restrictions and with the basic postu-
lates of continuum mechanics, the forces acting on a body are resolved into
a resultant force F and a resultant couple M given by

(14.3) F= g fa , M= g gaxfa

The first of these equations gives the vector sum of all forces acting on
each material point with position X and the second gives the vector sum

of the moments of these forces about a point which constitutes the origin

of Xy In a continuum, the force field is usually considered to be continuous

and (14.3) may be replaced by
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(14.4) F=[dF , M=[ (xxdF+dM)
v v ) )

where dF is the force density at a point x and dM is a couple density.
This latter terms arises in classical mechanics from coupling various
particles in the form of doublets or rigid blocks so that some of the
applied forces on particles produce a couple also. This physical pic-
ture can be used in the construction of the theories of micromechanics.

From a continuum viewpoint, whatever the origin may be, the forces
and couples may be divided into three categories.

a. Extrinsic Body Loads. These are the forces and couples that

arise from the external effects. They act on the mass points of the
body. They appear in the form of body forces and body couples per unit
mass of the body. The force of gravity is an example of a body force,
and an electromagnetic moment in a polarized medium is an example of a
body couple. A body couple can also arise from the uneven distribution
of the mass among microvolume elements, Fig. 14.1 and Fig., 14.2.

b. Extrinsic Surface Loads (Contact Loads). These loads arise from

the action of one body on another through the contacting surfaces. At a
small macrosurface they are equipollent to a force and a couple. Thus,
for example, forces acting on a macrosurface of Fig, 14,3 are equipollent
to a force and a couple placed at the centroid of the marrosurface element
ba, Fig. 14.4.

When a macrovolume Av is allowed to tend to dv, in general the body
couple L vanishes since the moment arms cf forces tend to zero while the
forces are assumed to remain bounded. Similarly, when Aa is allowed to
tend to da, the surface couple ! will approach to zero. This is the classical

picture in continuum mechanics



a7~

Because of the granular nature of the bodies, the mathematical limits
dv and da for the surface and volume elements are approximations which may
not be admissible for various physical phenomena in which the applied lcads
produce effects with some typical lengths (e.g., wave length) that are
comparable to distances and sizes of the microelements. In such situations,
Av and Aa are not infinitesimals, and the granular nature of the bodies must
be taken into account in some form. This then requires that we consider the
existence of both forces and couplesfor macrovolume and surface elements.

c. Internal Loads. Internal loads arise from the mutual action of

pairs of particles that are located inside the body. According to Newton's
third law, the interparticle forces cancel each other so that the resultant
force is zero.

In continuum mechanics, the internal effects are found by isolating a
small macroelement from the body and considering the effect of the rest of
the body as forces and couples on the surface of the macroelement as illus-
trated in Figs. 1l4.1 to 14.4. Internal forces give rise to the stress and
couple stress hypotheses,as we shall see below,.

Let the surface force per unit area at a point x on the surface of a
body having exterior normal n be denoted by E(n)' and the surface couple
per unit area by @(n)' Let the body force and body couple per unit mass at
an interior point of the body be respectively represented by f and 2. The
total force f and the total couple M about a point 0 acting on the body

can be calculated by, Fig. 14.5
(14.5) F = § t, .da + f pofdv

(14.6) M= 953[@(?) + x x g(n)]da + {/p(g + x x f)dv

Concentrated loads are imagined as resulting from a limiting process in which

the surface loads or body loads are distributed over a very small region.



=73

15. MECHANICAL BALANCE LAWS

The mechanical balance laws - conservation of mass, balance of
momentum, and balance of moment of momentum - are obtained by a process
of averaging applied to a macrovolume element containing N microelements
for which the classical balance laws are postulated to be valid. Each

of the microelements is considered to have a uniform mass density.

I. Principle of Conservation of Mass. The total mass of each micro-
(a) (a)
element remains constant during any deformation. Thus, . '0 and p

respectively denote the mass densities of a microelement a before and after

deformation, and Avg°) and Av(u) their volume, Fig. 15.1, then
(15.1) ogu)AVéa) = p(a)Av(a) . (a not summed)

The total mass of a macrovolume before and after deformations is respectively

given by
N @, (@)
(15.2) 0gdVy = | 0, av;
a=]1
N (@), (@)
(15.3) o = ] o Vv
a=1

These equations in effect define the mass densities °0(¥) and p(¥,t) of the

undeformed and deformed macrovolume elements. In view of (15.1) we see that

(15.4) poAVO = pAv

If we let AVO and AV approach their limiting values dV0 and dV, then

V = pd
°od o pdv

(15.5)
or

p
0 dv
> - d%) J = det (xk,K)



74~

which are the equivalent expressions of the principle of conservation of

mass for the macrovolume element.
In Section 2 we said that X is the position vector of the center of

mass of a macroelement. Accordingly,

Zpga)g(a)Av(a) =0
a

Upon using (15.1) and (2.14) this gives

¥k20(a)5éa)AV(a) =0
a

Since ¥k ¥ 0, this shows that the position vector x is the center of mass
of the deformed macrovolume., Consequently,

Theorem 1. The motion carries the center of mass of the undeformed

L
macrovolume to the center of mass of the deformed macrovolume™,

Nect, we calculate the second moments

-t (a)_(a)_(a),,(a)

(15.6) P Ig 8V = gpo Eg 5 AV,
¢

upon substituting (15.1) and (2.13), this may be written as (cf. Eringen
[1964c]))
(15.7) IKL - ikaKkXL
where
(15.8) oikQAV - ZO(O)E(O)E(G)AV(Q)

[0}

Quantities I and ikQ are respectively called the material and spatial

KL

microinertia tensors. Equations (15.7) may be stated as

1 Eringen [1964c]
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Theorem 2. The microinertia is conserved, i.e.,

2

(15.9) e KLy = 0

Using (12.9), this may also be expressed as (Eringen [1964c])

ai
e,

ot ikl,mvm b 1kmv2m - imlvkm T 0

In a micropolar continuum, a combination of i and IKL occur more

kg

frequently. These are

[
u
—
O
[}
-

(15.10)

P O S )

These tensors are identical to the inertia tensor encountered in rigid-
body dynamics.

Upon linearization and using (4.14), (15.7), and (15.11), we get

§

ol I IkebkilLe

Global balance equations for mass and microinertia are obtained

by integrating (15.4) and (15.7) over the volume of the body. Thus

(15.12) fp dv = fpdv
ve o
{Edolls) £°01KLdvo = épikzxxkazdv

where V is the undeformed volume and V 1is the deformed material volume.

II. Principle of Balance of Momentum. The time rate of change of momentum

is equal to the sum of all forces acting on a body.
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(a)

The mechanical momentum of a microelement Av is the product of

(a)v(a)Av(a)

its mass with the velocity, namely, p . The total momentum of

a macroelement is the vector sum of the micromomenta of its microelements.

For a micropolar body we have

ap = zp(a)y(a)Av(a) - 20(0)(Y o, é)Av(a)
a a

(a) (a)

= yip(a)Av + v ox Xp(u)EAv
a a N
The last term vanishes and in the limit we write
dp = pvdv

The tctal momentum of the body 1s therefore given by

(15.14) p = [ovdv
v

The principle of balance of momentum is expressed by

d
(15.15) * épydv - gg(g) * da + épfdv

Here ;(g) is the surface traction per unit area acting on the surface of
the body S with an outward directed normal n so that the surface integral
is the vector sum of all forces acting on S. The vector sum of the body
forces is given by the volume integral on the right. Equation (15.15) 1s

none other than that given in classical continuum mechanics.

III. Balance of Moment of Momentum. The time rate of change of moment

of momentum about a point is equal to the sum of all couples and the moment

of all forces about that point.




-77-

The mechanical moment of momentum of a microelement is defined as

the moment of its momentum, namely,

RORNONOMC)

The total moment of momentum of a macroelement is calculated by

an = Ta® x @), @
a

= 2(§ + &) x p(a)(y + g)Av(a)
a
Upon carrying out the multiplication, we get

(a);, (a)

bm = x YZp(a)Av(a) + JE xo éAv

a a

(a) (a)

+xx Jo@eav® -y« [y
a a

The last two summations vanish since ¢ is measured from the center of mass

~

of the deformed macroelement. Upon carrying the expression ¢ from (11,20),

in the limit we may write

(15.16) dm = px x vdv + podv

where

(15.17) pobv = zp(")g x (v x g)Av(")
o

is called the intrinsic spin. In component form this reads

(15.18) Ol- jkzvk

where we used (15.8) and (15.11)2 after expanding the triple product.

The total moment of momentum of a macroelement, therefore, is the
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vector sum of its angularmomentum and the intrinsic spin. The total moment
of momentum of a micropolar body is now calculated by

(15.19) M= j(x x pv + po)dv

LT

The principle of moment of momentum 1s expressed by

d
TS 5(3 X py + pg)dv = f_(z “ E) * Mg
(15.20)

+ [o(+ x x v
v

The right-hand side gives the sum of all moments about the origin as in (14.6).
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16. STRESS AND COUPLE STRESS

The state of internal loads and their connections to surface loads
may be found by applying the principles of global balance of momenta to
small regions fully and partially contained in the body, Fig. 16.1. To this
end, we first consider a small macrovolume, v + s, fully contained in the
body. At a point x of s, the effect of the remainder of the body is equi-

pollent to a surface force per unit area, E(n)’ called the stress vector,

and a couple per unit area, @(n)’ called the couple stress vector. These
loads depend on the position x, time t, and the orientation of the surface

s at x which Is described by the exterior normal n to s at x. This latter
dependence can be found explicitly by applying the mechanical principles of
momenta to a region v + s adjacent to the surface of the body. This approach
does in fact also provide the connection of surface loads to the internal
loads. Consider a small tetrahedron with three faces taken as the coordinate
surfaces and the fourth face being a part of the surface of the body, Fig.
16.2. We denote the stress vectors on any coordinate surface X, = const., by
-t and on s by S(g)' The equation of balance of momentum (15.15) can be

applied on this tetrahedron. Using the mean-value theorem to estimate the

volume and surface integrals, we write

*

(n)

~

* *
da, + pf Av

d * %
(pv &v) =t k43

dt e

where the quantities marked with asterisks are the values of those without
asterisks at some points of v + 8. The volume is denoted by 4v and the sur-

face areas by Aak and Aa., The mass is conserved so that

(16.1) d_d{ (pdv) = 0
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Upon dividing both sides of the foregoing equation by Av and letting Aa

and Av approach zero, we see that Av/ba - O and we obtain

(16.2) t(n)

~

da = gkdak

The four surfaces of the tetrahedron form a closed surface, therefore, the

1limit of the sum of area vectors dak must add up to da. Hence

(16.3) da = nda = da 1

k~k

From this we get

(16.4) da, = n da

Substituting this into (16.2) we get

(16.5) tny = B

~

where t, is independent of n. Thus we found that the stress vector t

“(n) :

a linear function of n. At two sides of a surface, n changes sign. From

k

(16.5) we therefore see that

(16.6) -
Eem) = S

which proves that the stress vectors on opposite sides of the same surface at

a given point areequal in magnitude and opposite in sign.

The application of the above method, with the use cf the equation of

balance of moment of momentum (15.20) leads to

(16.7) rp(n) = mknk

(16.8) T-n) T T(n)
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The concepts of stress tensor t, ., and couple stress tensor W, o DOV follow

ke

from the decompositions

(16.9) t, =t

(16.10) E‘k = m'kﬂ,iﬂ,'

Thus tese is the lth component of the stress vector ty which acts on the
surface x, = const. and L is the Rth component of the couple stress vector
which acts on the same surface., The positiwe directions of tkl and those

of m. are shown on Figs. 16.3 and 16.4 respectively. We use double-headed
arrows for Mg

From (16.5), (16.7), (16.9), and (16.10) it follows that

(16.11) g(g) = ey

(16.12) e LWL Y

It is thus clear that the moment vectors for the couple stress have
the identical sign convention to those of the stress vectors. The plane of

each couple is of course perpendicular to the couple vector, and the direc-

tion is as described by the right-hand screw rule.

The expanded form of the components of E(n) and @(n) in rectangular

coordinates are

n +t n +t n
X

t(q)x T Cxx yx'y zZx 2

(16.13) t =t n +t n +t n

(n)y Xy x  yyy zy 2

t =t n
(n)z Xz X yz'y zz 2
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m =m n +m n +m_n
(n)x XX X yxX'y 2x 2

(16.14) m =m n +m n +m n
(n)y Xy x yy 'y zy z

m
(n) = m n +m n +m n
<’z XZ X yz'y zz 2z
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17. LOCAL BALANCE LAWS

Local balance laws are obtained by postulating that the global
balance laws are valid for every part of the body. For the conservation

of mass, we convert the volume integral over V to V. Thus

(17.1) [Gpy = pd)dv = 0O
v

where

(17.2) J = det (xk l()

is the jacobian of the transformation. Postulating that (17.1) is valid
for every part of the body, we obtain the equation of local mass conser-

vation.

(17.3) oo/o =J

Another form often used in hydrodynamics is obtained from this by taking

the material derivative of (17.3). Thus
opJ +pJ =0
and we can show that (Eringen {1962, Art. 19])

J - Jvk,k = 0

Consequently

+ ovk,k = 0

VO »

or since

s 92
o =3t oV
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this reads

9L -
(17.4) e + (cwk),k 0

This is the celebrated equation of continuity. One may, of course, equally
employ (17.3) in place of (17.5). Alternative forms which follows from (15.4)

are

(17.5) podV0 = pdv , EE— =0

An expanded form of (17.4) in rectangular coordinates is

3(pvx) 3 (ovy) a(ovz)

3p =
(17.6) ot + 9X M 3y + oz .

where (vx, vy. vz) are the rectangular components of the velocity field.
Equations of local balance for the microinertia are already given by

(15.7) and (15.9). For the linear theory using (15.11) we get

Diy g
Dt

(17.7) =0

The local balance of momenta follows from (15.15) and (15.20). Upon

carrying out the indicated differentiation and using (17.5)2, and writing

a=yv, v =x,we see that

(17.8) foadv = §§( )da + fofdv
voooos v
(17.9) £(§ x pa + po)dv = §(x x F(Q) + @(Q))da + [o(L + x x f)dv

S

S -~

\

These are other forms of the global balance of momenta. We now take V + S
from

to be a small internal portion v + s of the body., Substitucin%4(16.5) and

(16.7) we write
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(17.10) [padv = §§knkda + [pfdv
v ] \4
(17.11) {p(g x a+ g)dv = i(g xt, +m)nda+ {p(g + x x f)dv

In rectangular coordinates, the Green-Gauss theorem is expressed as

(17.12) fg.n da = [g . dv
s v '’

If we now apply this theorem to (17.10) and (17.11) to convert the surface

integrals to volume integrals, we obtain

(17.13) ilsk,k + p(f -a)ldv=20
(17.14) {[Tk,k + Lk Xty + o(g - é)]dv
+ ({’f X [t‘:k,k + D(i - g)]dv =0

For these equations to be valid for any arbitrary volume v in the body,

the necessary and sufficient condition is the vanishing of the integrands,

Hence
(17.15) Ek,k + £(§ - y) = (
(17.16) Tk,k + ik x gk + p(g - ¢) =0

Note that the second integrand in (17.14) vanishes by virtue of (17.15),.
These equations are the expressions of the local balance of momenta. They
are identical to those given in Eringen [1962, eqs. (32.7) and (32.8)) with

the exception of the spin inertia term oé. This term arises from the postulate
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of an independcnt microrotation. In fact, without such an internal degree
of freedom, the existence of m and £ is'questionable. Upon substituting

(16.9) and (16.10) into (17.15) and (17.16), we obtain the component form

of these equations, namely,

(17.17) tlk,l + p(fk = vk) =0

(17.18) m + t + p(2

tk,?  “kmn mn k- %) =0

These are the first and second laws of motion of Cauchy which express the

local balance of momenta for micropolar bodiesl. When the body is nonpolar,

that is, when o = m = 2 =0, then (17.18) gives the classical result

(17.19) G = Yok

which expresses the symmetry of the stress tensor. For micropolar bodies,
we see that the stress is in general nonsymmetrical and the new set of differ-
ential equations (17.18) must be employed replacing (17.19).

In rectangular coordinates, the expanded expressions of (17.17) and

(17.18) are recorded below

a:xx acjx it o c

ax ay * 9z * a(fx - vx) = 0

at at ot .
(17.20) X oy XY —ELy (f - v =0

90X oy oz y

3txz atv? )L7__ .

Ix dy e el = Vo=

1

If we disregard the relation of o, to K given by (15.18), these balance

k
laws are valid for the nonlinear theory, and (17.17) and (17, .8) are exact

expressions, cf. Eringen and Suhuvi [1Y64a & b].
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18. CONSERVATION OF ENERGY

An important axiom of thermomechanics 1is the principle of conservation

of energy which may be stated as follows:

Iv. Principle of Conservation of Energy. The time rate of change of the

sum of the kinetic energy and the internal energy is equal to the sum of the

mechanical energy, heat energy, and other energies. Here we exclude chemical

and electrical energies so that we may express this law mathematically as
(18.1) K+ E=W+ Q

Here K, E, W and Q are, respectively, the kinetic energy, the internal energy,
the work of applied loads per unit time, and the heat energy. For a micro-

polar continuum, these quantities may be expressed as:

1
{2 KE5 6°(vkvk MR TR
(18.3) E = [pedv
v
(18.4) W = §(tlkvk +m v )dag + Jo(f v+ 8 v )dv

v

(18.5) Q = §q,da, + [ohdv

S v

The physical meaning of some of the terms occurring in these equations is

known to us in the classical continuum, For example, the first term in the
integrand of (18.2) is the kinetic energy of the macromotion. The second

term is, however, new and it is the kinetic energy of the microrotation. In
(18.3), € is the internal energy density per unit mass. In (18.4), the surface
integral is the work of surface tractions and surface couples per unit time,
while the volume integral is the work of the body force and body couple, per

unit time.
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Finally, in (18.5) the surface integral gives the heat input, and the volume
integral the heat source.

The equation of local energy balance is obtained by postulating that
(18.1) is valid for any arbitrary volume containsd in the body. To this
end we first carry out the indicated differentiation with respect to time

for K and E. Thus

(18.6) K = {;o(akvk + ékvk)dv
(18.7) E = [pcdv
v

where, in anticipation of the local laws, we employed the equations of

conservations of local mass and inertia (l7.5)2, (17.7), namely,

Dj
. k&
(18.8) i 0 , Dt * 0

Next we convert the surface integrals of (18.4) and (18.5) into volume

integrals by use of the Green-Gauss theorem. Hence

W= f(

! ]
! tlkvk,l + mlkvk,l)dv + v[(t + pfk)vk + (m + 0 k)vk]dv

2k, 2 2k, &

Q= l_(;(qk’k + ph)dv

Upon carrying (18.6), (18.7), and the above equations into (18.1), and using

the equations of local balance of momenta (17.17) and (17.18), we obtain

£(°e Tk, 8 T Ckmatmalk T ok, T Y, Phidv =10

This is assumed to be valid for every part of the body. Thus we must have
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(18.9) PE = oVt T Ckmntmnk t PakVk,2 Y YW,k T PR
This is the differential equation of the Jlocal balance of energy of a micro-

polar bodyl. In exp.nded form it reads
oV v v

g X X
€= e = F —
. txx X yx dy tzx 3z

+t =L 4+ —Ls+ L

avz avz 3vz
+txz Tax * tyz _3; * Y22 T3z
--(tyz > czy)v - (:zx = cxz)v - (t_ - :yx)v
(18.10) Bvx 8vx v
+mxx ax T myx ay + Bzx @
v oV v

J€E J€ 3 OF
g—+— — —
(18.11) € at ax vx + vy + 92 vz

1
Again the energy balance equation (18.9) is exact in this form and is
valid for the nonlinear theory:
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19. PRINCIPLE OF ENTR0PY

For certain classes of physical phenomena within a range of expected
changes, a material body is characterized by certain constitutive equations.
These equations define an ideal material approximating the real material
under consideration. For any thermomechanical change, the constitutive
equations assumed must not violate the second law of thermodynamics. In

continuum mechanics, this law may be stated as follows:

V. Principle of Entropy (Clausius-Duhem Inequality). The time rate of

change of the total entropy H is never less than the entropy influx through

surface S of the body and the volume entropy supply B in the body. Talis

the
is

1s postulated to be true for all parts of the body and for all independent

processes (Eringen [1966c]).

Accordingly we write

o R
(19.1) r=4-B-¢s-da>0

3

where I' so defined is the total entropy production. For simple thermomechani-

cal processes we have

(19.2) H = [pndv
v

(19.3) Bz /2y
v

(19.4) S =3

where n, h, q and 6 are, respectively, the entropy density, heat source, heat
vector, and the absolute temperature. Substituting (19.2) to (19.4) into (19.1)

gives
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q
-4 _th .k
(19.5) = s épndv ve dv f 5 dak >0

Using the Green-Gauss theorem to convert the surface integral to a
volume integral and carrying out the differentiation with respect to time,

we get

’ g q
(19.6) o - (s, - Dlav > 0

Since this is to be valid for all parts of the body, we must have

. qk h
(19.7) pn = (Fhy - 520

This is the well-known Clausius-Duhem inequality of classical continuum
mechanics. In micropolar bodies, this is considered to be unchanged.
Upon substituting h solved from (18.9), we can rearrange (19.7)

into the following form

ey L1 1
(055) pY 2 0(n - §) *F 5%,k ~ 8 kmntmnk
1

o MkVk, 0 T 77 WO 2

Still another form, convenient for some cases, is found by introducing the

Helmholtz free energy

(19.9) v=e-06n
Hence
-SSR | L
(19.10) Y = - % (¢ + ro) + ) tkgvg,k 8 kmntmn 'k
+ i m, v + = 6 > 0
6 "akk, 2 " 2 Uk =
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The Clausius-Duhem inequality (19.8) or (19.10) is postulated to be valid

for all independent thermomechanical changes. This implies that we must

know the independent variables which affect yx, n, tkl’ Wegs and q, at the

outset. This in turn requires writing constitutive equations for these

variables., An example of this is to be found in the following article.
We also note that the .ntropy inequality (19.5) can be shown to

lead to an inequality restricting the normal component of q/6 on the surface

of the body (Eringen [1966c]),i.e.,
q
(19.11) pg] ‘0> 0 on S

where a boldface bracket indicates the difference on the quantity enclosed

calculated from two different sides of S, on S.
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20. THEORY OF MICROPOLAR ELASTICITY

A micropolar elastic solid is distinguished from an elastic solid
by the fact that it can support body and surface couples. These solids
can undergo local deformations and microrotations. Such materials may
be imagined as bodies which are made of rigid shorlL cylinders or
dumbbell type molecules.

From a continuum mechanical point of view, micropolar elastic solids
may be characterized by a set of constitutive equations which define the
elastic properties of such materials, A linear theory as a special case of
the nonlinear theory of microelastic solids was first constructed by Eringen
and Suhubi [1964a,b). Later, Eringen [1965], [1966] reorganized and extended
this theory. Here we give a self-contained account of this theory.

In linear micropolar elasticity, the strain measures are (cf. equations

(4.17) and (4.18))

(20.1) e = %kt T fnn T W T Yok Y Cekatn
(Ao Tkam Eklnon,m
Since only the nine components @k % of Yeam 3F€ independent and non-vanishing
»
(cf. equation (4.37)), we may instead of Yiom USe the axial tensor ok ¢ for
?

simplicity. Upon arbitrary rotations and reflections of the spatial coordinates

represented by ka, ie.,

=0
(20.3) X Uo¥q

. 0 0 =0 0 = § 0 =
(20.4) %ome T “ekme T Okm 0 det g, =0l

and the tensors ¢ L and ¢

K transform according to

k, 2
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1t " nfmnZen
(20.5) '
¢k,l B !ka¢m,nQ2n

where in the last equation the plus sign is for det le = +1 and the minus
sign for det ka = -1. This is because ¢k is an axial vector. Equations

(20.5) express the fact that both ¢ _ and ¢k,2 are objective tensors and

kg
are appropriate for use as independent constitutive variables. To this
list of variables we also include the temperature 6 so that the material

properties of these materials may depend on the temperature as well. The

constitutive dependent variables are

Epigel Mgl W » Prandin

We now propose a set of constitutive equations of the form

ki k' rs r,s

(20.6)

n = N(frs . ¢r , 8)

The above equations are legitimate for linear homogeneous materials whether
isotropic or not. For nonlinear isotropic materie:s they are acceptable in
form. However, since we are employing the Infinitesimal strain measures, a

nonlinear constitutive theory in terms of linear strain measures would be
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inconsistent. For the nonlinear theory, the reader is referred to Eringen
and Suhubi [1964a & b].

The constitutive equation (20.6) must be consistent with the second
law of thermodynamics as expressed by (19.10). Thus, upon substituting

(20.6) into (19.10), we have

PR YRR VPN U
e(aekz Ckz+a¢k£°k,z+aee+”e)+e‘kzckz

(20-7) 1 o 1
* o Mkt 2 Qs 20

Consistent with the linear theory we write

D .
ot k.20 " %1

(20.8)

k¢ " VKt T fkam'’m

The inequality (20.7) is postulated to be valid for all independent processes.

Here ¢

¢ 6 and 6, can be varied independently. Since this inequality

k,L° 'k

is linear in all these variables, we must set the coefiicients of these varia-

ke ?

bles equal to zero. Hence

. . Y
kt aekg
Y
(20.9) =p
et 30 1
q =0
3y

(> %
[eo]
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We therefore see that for a micropolar elastic solid stress, the couple stress

and entropy density are derivable from a potential and the heat vector vanishes.

Since we did not consider the temperature gradient, we have no heat conduction.
Nevertheless, the free energy Y and consequently the material moduli will
depend on the temperature 6. Since all terms in (20.7) vanish, we have the

entropy production density y also vanishing.Thus,the micropolar elastic solid

is in thermal equilibrium.

Here we are concerned with the linear theory. We therefore consider a

polynomial for ¢ which 1s second degree in the strain measures e and ¢ i,e.,

ke K2’

1 1
= 4 - -
PY = &0+ &4 p%ke ¥ 2 Mamn®in T Bke®k, et 2 Bromn®, 2% m,n
(20.10)
* Cklmnek2®m,n
where Ag, , A s B ,, ... are functions of 6 only. Since ¢, is an axial
Akg Sl fourth and the k

vector, upon a reflection of the spatial axes theAlast termswill change sign
while the other terms do not. For the function Y to be invariant Bkl =0,
Cklmn = 0. We further note the following symmetry conditions which are clear

from various summations in (20.10)

(20LE) Aklmn - Amnkl ’ Bk!lmn B ankl

which shows that for the most general micropolar anisotropic elastic solid,

the number gi-Aklmn and anki is 45 each. 1In addition, we have nine Akl

which give rise to an initial stress in the undeformed state of the body.

Upon substituting (20.10) into (20.9)l and (20 9)2, we obtain

(20.12) tk! - AkQ + Akan"mn

(20.13) M =

B2kmn®m,n
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These are the linear forms of the stress and couple stress constitutive
equations for the anisotropic micropolar elastic solids. When the initial
stress is zero, then we must also have Akl = 0, Thus, for the micropolar

solid free of initial stress and couple stress, we have

(20.14) tkl = Akﬁmnemn

(20.15) Mg T B2kmn¢m,n

Various material symmetry conditions place further restrictions on the con-

stitutive coefficients A and B . These restrictions are found in
Lkmn Lkmn

the same manner as in classical elasticity. Here we obtain the case of

isotropic solids. If the body is isotropic with respect to both the stress

and couple stress, we call the solid microisotropic. In this case, the

constitutive coefficients must be isotropic tensors. For the second and

fourth-order isotropic tensors, we have the most general forms

A A B 1 1%k bt 2%kt T 23k
(20.16)

Betmn~ 1% 0% B2%kmtn t B3%knCim

where A, Al’ A2, A3, Bl' B2, and 83

then, (20.12) and (20.13) take the special fcrms

are functions of 6 only. 1In this case

(20.17) ty = A6k2 + A r'5k£ AN, T AgE

(20.18) Mg = Bop ¥ B1r Skt B0 i t Byt g

For vanishing initial stress A = 0. Introducing
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Al = A, A2 S u+x, A3 AT
(20.19)

Bl :a , BZ =, - 33 =] B
the above equations can be written as
(20.20) ey = Aerrdkl + (u + K)ckl + L
(A osll) ey = %0 pSn T8O 0 T Yy

For the free energy in this case we find

1
oY = 5 Ay ¥ (W + e e, tug enl
(20.22)
1
12 (00 180 T B 0%k T Y% %, )

An alternative form to (20.20) to (20.22) is

(20.23) cki = Aerrdkg + (2u + K)ekl + Keklm(rm - ¢m)
(20.24) ka = a¢r,r6k2+ Bok,l + Y¢2,k
1
(20.25) oY = > [Aekkezz + (2u + K)eklekll + v<(rk - ¢k)(rk - ¢k)
+ 2 (ad ¢ + B¢ ¢ + v¢ ¢ )
2 %%, k%, k, 2%,k T Y%, e%,2

We note the difference between isotropic micropolar elasticity and classical
elasticity by the presence of four extra elastic moduli, namely, x, a, B and
Y. When these are set equal to zero, the above equations (20.23) to (20.25)

revert to Hooke's law of the linear isotropic elastic solid.
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21, RESTRICTIONS ON MICROPOLAR LLASTIC MODULI

The stability of materials requires that the stored elastic energy
be nonnegative. This condition is also essential for the uniqueness of
the solutions. This requirement places certain restrictions on the micro-
polar elastic moduli. The following theorem, Eringen [1966a],provides these

conditions for ¥ independent of 6.

Theorem. The necessary and sufficient conditions for the internal

ener to be nonnegative are
goergy to pe

0 <3x+ 2u+«x, 0 <uw , 0=«
(21.1)

0 < 3a + 2y » Y B <y, 0 <y

The sufficiency of (21.1) is proven by observing that when these inequalities
hold,each one of the following energies constituting the internal energy

density is nonnegative
(21.2) € =€ _+¢e_+ ¢

where

+ (2u + x)e

]

©
(4]
+

g l-[Ae e e
E 2 kk 212 k& Lk

(21.3) pE -<(rk - ®k)(rk - ¢k)

©
"
"

1
2 OO0 k%0 T B 0%kt YO k0K

The fact that PER is nonnegative under the conditions (21.1)l and (21.1)2
is well known for the classical elasticity. It is simple to observe that
PER is nonnegative for r # ok whenever « > 0. To see the same for PEys

we write this expression as
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1
ZOEM = 3~(3a + 8 + Y)@k’k®l’l + (y - B)°[k,2]°[k,2]
(21.4)
+ (v + 8) (0 RN Lo 5]
k,2) ~ 3 %%k, 0) T3 %s,s%ke
where
¢ 3 l‘(@ + ¢ )
(k,2) 2 “*k,2 T %,k
(21.5)

21
Yikyal © 2 Ok p T %k
From (21.4) it is clear that when
(21.6) Ja+B8+y2>20 , y-8>0 , y+8>0

we have pe, > 0 so that (21.1) are sufficient for pey 2 0.

Conditions (21.1) are also necessary for the nonnegativeness of pe.

To prove this, we recall that e and ok g can be varied independ-
1]

ke Tk T %

ently of each other. Since the above three energies are uncoupled with
respect to these variables, each one of these energies must be nonnegative
independent of each other. The fact that (21.1)1 and (21.1)2 are necessary

for PEE > 0 is known to us from classical elasticity. Excluding the case of

r, = ¢, (indeterminate couple stress theory), we see that pe_ 1s nonnegative

k k

if and only if « > 0. For the case of r,=2¢

R

K by replacing 2. + « by a
new modulus 2y we shall have « di‘sappear from the constitutive equations,
Thus, 1t remains to prove the necessity of (21,1) for the nonnegativeness

of pcM. To this we write it as a quadratic form in a nine-dimensional space,

i.e.,

(21.7) ey = aijyiyj » 1j ji s

where



(21.8)

a = a

11 - % ~ ™

812 T 3137 %3

all other a1j =0

= 0 QQS-
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The characteristic values a, of a,, are obtained by solving the equation

(21.9)

1 13

det (aij - aéij) = 0

The nine roots a, of this equation are

i

4, = g, '= a8

1 2 3

a9 =3a+ B+ vy

In order for oeM

= y -8 a, =a_. =a, = a, = a

> 0 to be satisfied for all Yy it is necessary (and suffi-

cient that) (21.7) be an ellipsoid in nine-dimensional space, i.e.,

y-8>0

This set of conditions
Hence the proof of the

The nonnegative
implications in regard

polar elasticity. For

y Y+ B20 , 3a+8+y20

is the same as the last three conditions of (21.1).
theorem.

character of the internal energy density has important
to uniqueness theorems in both static and dynamic micro-

these and other importaat results see Eringen [1966a,b]
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22, FIELD EQUATIONS, BOUNDARY AND INITIAL CONDITIONS

The field equations of linear micropolar elasticity are obtained by

substituting (20.23) and (20.24) into (17.17) and (17.18). Hence
(22.1) (1 + u)ul’zk + (u + z)uk’“ + Kek2m¢m,9~ + p(fk - uk) = 0
(22.2) (a+ B¢y o * YO g ¥ KEqn¥m,g T 2KO (Y - 38) = 0

where we have taken Jkl = jékg for the microisotropic solid. In the linear
theory, o and j are considered constants and the accelerations Uk and $k

are calculated by their approximate expressions

azuk - 32°k
(22.3) o = -—a't—z o ¢k=a—t2'

The vectorial forms of these equations are found to be convenient for the
treatment of problems in curvilinear coordinates. These are readily obtained

from the above equations by simply multiplying them by 1k and observing that

B T L T S
U gpl =YY ru - U x Vo
where V is the gradient operator so that
V¢ = grad ¢ 0 Veusz=zdivu , VU xuz=curlu

Hence
(22.5) (A + 2p+ x)VV » u - (b + k)7 x 0 xu+«V x¢+ p(f -u)=0

(22.6) (a+ 8+ YUV + ¢ - YU x U x ¢ + <V xu=-2c¢+0(2-3¢) =0



-104-

For an initial value problem, the initial conditions have the form

(22.7) u(x,0) = ug(x) , L:x(§,0) = vo(x)
in V
(22.8) ¢(x,0) = ¢o(x) $(x,0) = vo(x)

where up, Vo, ¢0, and vg are prescribed in V at time t = 0.
Many different types of boundary conditions are suggested in applica-

tions. For example, we may prescribe

(22.9) u(x',t) = u'
x' on S
(22.10) o(x',t) = ¢

on the boundary surface S of the body. An equally permissible set of boundary

conditions requires the prescription of the tractions and couples, i.e.,

(22.11) toly = t(g)k

on S

(22.12) mp g = m(g)k

where tlk and mo are the stress and the couple stress tensors given by (20.23)

and (20,24) and t and m are the prescribed tractions and couples on

(n)k (n)k
S whose exterior normal is n.

In some other problems, a mixture of the above two types of conditions
occurs, e.g., on some part Sd of S one may have (22.9) and (22.10) and on the
remainder Sl =8 - Sd the conditions (22.11) and (22.12). Still other types
of mixed conditions involving some components of one set and the remaining

components of the other set are possible. All admissible sets of boundary con-

ditions allowing unique solutions must satisfy (Eringen [1966a])
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(22.13) t(g)kuk + m(g)k¢k =0 onS , t >0

where g, §, E(g)’ and 6(9) are, respectively, the difference of u, ¢, E(n)
and @(Q) from their respective values on S. ~

The field equations (22.1) and (22.2) are valid only for micropolar
isotropic solids. Note that for vanishing «x, a, B, % and j, equation (22.2)
reduces to 0 = 0, and (22.1) gives the celebrated equations of Navier of
classical elasticity.

For the anisotropic micropolar elastic solid, the field equations
replacing (22.1) and (22.2) are obtained by substituting (20.14) and (20.15)

into (17.17) and (17.18)

(22.14) A (

Lkmn ) +o(f - W) =0

u +
n,m{ Enmr¢r,2

(22.15) ¢.) + o(lk - jzkal) =0

Bkzmn%,nz * CkmnAmnpq(uq.p * eqpl’ r

For the expressions of €0k and o, we used (20.1) and (15.18).

Finally, we record below the expanded forms of the field equations

(22.1) and (22.2) in rectangular coordinates.

3 aux auy auz 32ux azux azux
(A+u)a—x(ax+ ay+ az)+(u+»<)( 2t 7>+ 2)
ax oy 9z
3¢z 9¢ Bzux
s ‘('3§ - az) * o(fx - 2) =0
ot
5 aux ?EZ auz 82uv azuy azqy
A+ p) == (= + + ) + (b + <)( + + )
dy = 9x ay 9z ax2 ayZ az2
(22.16) 2, 26 22y
*"(E'_ax)+°(fy' 7) =0
at
3 aux 331 auz Bzuz azuz azuz
A+ w) o= G+ 5y + 2 t S +—+—)
Ix oy dz
¢ 3¢x azuz
+ «( ax _3;9 * p(fz - 2) =0
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2 2 2
3¢ 3¢ 36 3% L) ¢ 3u du
9 X 'y 24 X X X z _ _y
0+ 8) 55 ot oy T RNttt - )
ox ay ]
az¢x
- 29+ (L -J—3) =0
X X at2
2 2 2
3¢ 3. 3¢ 3% 3¢ 3% du 3u
Lo X, X Zy+ Y Y y —X_ 2z
0+ 8) 5 Ot oyt RNWEC o+~ + ) - )
ax ay dz
ol
- 26 + (L -3—L) =0
y y ”
, 20, 20 20 obe,  a%e dle du,  du
—_— + -y X
(o + 8) 9z ( ox ay + 32) v ( 3 2t 2 1 2) + < % ay)
X ay 3
azoz
- 2<¢z + p(L -3 2) = 0
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23, INDETERMINATE COUPLE STRESS THEORY

In Art. 22 we indicated that classical elasticity is a special case
of the micropolar theory when« = a =8 =y = j =0 and { = 0, The same
is also true for motions in which the microrotation vanishes. There exist
other classes of constrained motions which have attracted the attention of
research workers. The most popular among them is the indetermine couple
stress theory which is contained in the work of the Cosserats [1909). Recently,
Truesdell and Toupin [1960], Grioli [1960], Aero and Kuvshinskii [1960]}, Mindlin
and Tiersten [1962], Toupin [1962], and Eringen [1962] independently presented
new derivations and supplied various missing parts Qf the thcory. This theory

can be obtained as a special case of the micropolar theory if the constraints

(23.1) " oo --;—

k Eklmum,l

are imposed. In this case, the stress constitutive equations (20.23) reduce

to

8 + (2u + ¥)e

(23.2) t(kl) = Aerr Kt

k2

where a parenthesis enclosing indices as usual indicates the symmetric part
of the stress tensor. We also use a bracket to denote the antisymmetric part

of tensors, e.g.,

: & -1 -
3y T2 @t ag) b gy 7 (B T oAy

Thus, when (23.1) is valid, the antisymmetric part of the stress disappears
from the constitutive equations. We can, however, remedy this situation by
another artifice. The equations of moment of momentum (17,18) can be used

to solve for the antisymmetric part of the stress tensor., Multiplying (17.18)



by € , we solve for

krs
(23.3) t[kSL] " -%Crklmnr,n - %perkl(zr - ;r)
where we used the identity
(el Crkebrmn T 6kmaln - 6knélm
Upon carrying (23.1) into (20.24) we have
(&2 e © gnckrsus,rl + %'Elrsus,rk
Carrying (23.5) and the expression of
(23.6) g_ = jo_ = i je__ d

r r 2 mn n,m

into (23.3),we have
feocly hea) = 3 Vzu[k.z] - 3oty * 360y

where Vz is the laplacian operator in rectangular coordinates

2 -
(23.8) v u, = uﬁ,kk

If we not substitute (23.2) and (23.7) into

(23.9) b = ko) T Srke)

we get the total stress tensor
K
(23.10) ) Aur,rékl + (u+ 2)(uk’2 + ul,k)

2

X _i ;
PV Uk, ) T2 Oty TOU

[k,2]°
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The presence of the body couple Qr and the acceleration uk in this equation
is certainly disturbing since the constitutive equations, in general, should
not contain such terms. When (23.9) 1s carried into the equation of balance

of momentum (17.17), we find

K,.X g2 £_X g2
(23.11) (>\+u+2+4v)uk’zk+(u+2 4\7)u2’kk

I - S 2 J:hl
Y Cpgrtp, T PEy = AL = G VO, P U ek

By use of identities (22.4), we may also obtain the vector form of

these equations:

(23.1) O+ 20+ 0% cu- (u+E-Lohgx g xy

$p(E+ 77 %) ~ o+ y x VU =0

where for the lapalcian operator we have used
(23.13) Va9 A-TxTxA

Equation (23.12) takes the form (3.27) obtained by Mindlin and Tiersten [1962]
in an entirely different way if we write u for u + x/2 and n for v/4 and j = 0.
Thus, these authors as with others,have neglected the micropolar rotatory
inertia. Equations (23.11) or (23.12) are the field equations of the theory
known as the (indeterminate) couple stress theory., It is to be observed that
in this theory the skew-symmetric part of stress and consequently the stress
are dependent on the applied loads and inertia, and they are not determined
solely as a result of the constitutive character of the medium. This violates
the axiom objectivity since the applied loads and inertia terms involved are

not objective quantities. A second relevant point is that while according to
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(23.5) one can determine both the symmetric and the skew-symmetric parts
of the couple stress, this in fact 1s not the case of the couple stress
theory in which constitutive equations are derived from a free energy
function, as 1is done in Art. 20. It is clear from (20.9)2, for example,
that all components of ¢£,k can no longer be used as independent variables.
In fact, if one uses (23.1) in the argument of free energy ¥, one finds
that all nine components of m o are not independent. Moreover, the skew-
symmetric parts of the stress and couple stress remain indeterminate’.
This is the reason for the use of the terminology ''indeterminate'.

This situation has certain similarity to the isochoric motions of
compressible bodies as compared to the motions of incompressible solids.
As 18 well-known, in the latter case the pressure is not determined through
the constitutive equations. Finally, in the indeterminate couple stress
theory, the number of boundary conditions on the surface tractions and
couples must be reduced from six to five. A consistent set of boundary
conditions must not violate the uniqueness theorem. Mindlin and Tiersten
[1962]) have obtained a uniqueness theorem for the following set of boundary

conditions.

Let (El, §2, §3) be a set of orthogonal curvilinear coordinates
taken in such a way thac §3 = ﬁg locally coincides with the surface S of
the body. The boundary conditions consist of specifying at §3 = §g one

factor in each of the five products

(23.14) plu1 » Polys t(33)u3 , m3lrl . m32r2

. In this regard, see the discussion given in Eringen {1962, Art. 40]. See
also Mindlin and Tiersten [1962], Toupin [1962], and Eringen [1964b].



-111-

where
B S B Ak (A =R )
1~ "(31) 2 124 33;2
(23.15)

- 1 .- -
Py % te3z) * 7 Myy,4 = Wyg,p)

Here an index placed after a semicolon denotes directional differentiation
along the corresponding curvilinear coordinate, and a superposed bar the

boundary values of the quantities involved. Curvilinear components of the
displacement vector on S are denoted by Gk’ the couple stress by akl' and

the stress tensor by Ekl'

If an edge is an intersection of two orthogonal surfaces k? = §g

and il = §g, then we must also specify

- [m11]-0 or u,
X1

(23.16) {5331;0

3
The reduction of the number of boundary conditions from six to the above
five, (23.15), is similar to the one encountered in the Bernoulli-Euler
theory of thin plates. Conditions (23.16) are the analogs to the corner
conditions.

Under suitable regularity assumptions, the above five boundary condi-
tions, together with the assignment of the body force field of, curl (pg),
and the initial values of u and é (with j = 0), are sufficient for the unique
and m

determination of e The displacement field u and

ke Tk, 20 S(ke) ke]”

the rotation r are unique too within an arbitrary rigid body displacement
field.
The indeterminate couple stress theory described above has many

apparent limitations. Whether or not bodies can undergo such constrained
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motions is not known. The appearance of nonobjective quantities in the
constitutive equations, the limitations on the spin inertia and the body
couple field, and physically unnatural boundary conditions leaves much

to be desired. Experimental comparison for certain practical applications
exists (cf. Schijve [1966]). A discussion of the weakness of this theory
indicating the disagreement of the theoretical results with the experiments
has been given by Kaloni and Ariman {1967]). Nevertheless, recent litera-

ture contains a large number of solutions in the field.
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24, PROPAGATION OF WAVES IN AN INFINITE

MICROPOLAR ELASTIC SOLIDl

Here and in the following several articles we investigate solutions
of certain dynamic and static problems in linear isotropic micropolar elas-
ticity. Essential to these problems are the field equations (22.5) and
(22.6) and boundary conditions of the type listed in (22.11) to (22.12).

The propagation of linear isotropic micropolar elastic waves with

vanishing body loads 1is governed by (22.5) and (22.6) or
2 2 2 2 2 ..
(24.1) (c1 + c3)YY u - (c2 + c3)V x U xy+ c3Y ¢ = U

2

QU9+ WY X u - 2upg = ¢

2 2
(24.2) (ca + cs)Vy *¢-c

vnere
c2 . AM2u c2 ] 2 _x
1~ ’ 2 o ° €3 p

(24.3) cz
2-x o 2oas 2.8
4 pj 5 pj 0 3 0]

We decompose the vectors u and ¢ into scalar and vector potentials as

follows:

(24.4)

2 =3
n
©
+
<
x
<

-
<
>

0
o

Substituting these into (24.1) and (24.2), we see that these equations are

satisfied 1if

1 The present section is based on the work of Parfitt and Eringen ([1966]
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(24.5) (2 + 2)vPu = u

(24.6) (2 + Byete - 2le -
(24.7) (2 + Bty s dux o
(24.8) es720 - 2uby + W7 x U= 8

It may be observed that (24.5) and (24.6) are uncoupled for the scalar
potentials u and ¢, while equations (24.7) and (24.8) for the vector

potentials are coupled.

Plane waves advancing in the positive direction of the unit vector

n may be expressed as
(24.9) {u, ¢, U, ¢} = {a, b, A, B} exp [ik (n * r - vt)]

where (a,b) are complex constants, (A, B) are complex constant vectors, k

is the wave number, and r is the position vector. Thus

_ 21 -
(24.10) k== » r=xi

in which 2 is the wave length and gk are the unit rectangular base vectors.

Substituting (24.9) into (24.5) gives

2 2 2
(24.11) Vi =Y + c3 = (A + 2u + x)/p

which shows that a plane wave with the displacement vector

(24,12) u - iklag exp [ikl(n cr - vlt)]

may exist in the direction of propation n, Fig. 24.1. These waves are the

counterpart of the classical irrotational waves and reduce to them when x = 0.
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We designate these waves, longitudinal displacement waves.

A second scalar plane wave is the solution of (24.6) in the form

(24.9). The wave speed in this case is

(24.13) vg 22

2 2, -2
4 + c5 + 2w0k

If we introduce the angular frequency w

(24.14) = ani = 2nvi/2 = kvi

9y

the wave speed may be expressed as

-1
2w

N

) - o+ B+Y
pJ(1 - 2'(2)
ojw2

(24.15) v, = (cz + cg)(l -

N

N Njo N

w

The speed of these waves depends on the frequency. Hence they are disper-

sive. Since
(24.16) a+ B +y>0
we see that such waves can exist whenever

(24.17) w, > 2w0

These waves will be called longitudinal microrotation waves, Fig. 24.1.

The microrotation vector is given by

(24.18) ¢ = V¢ = ik, bn exp [ikz(p s r - vzt)]

2

For the case of w,y = JEwO ’wc, we have v, = © and the wave does not exist.

When w, < V2w_, v, becomes purely imaginary, i.e.,

0’ "2
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(24.19) v, = ti|v 1= /=1

2 2 I ]

It may be seen that a standing wave of the form

w
(24.,20) ¢ =b exp (- T;gT n o r)exp (—iwzt)
2

is possible.
For such waves, propagation is possible if w, > /Ebo. Hence,
2w0 = w 1is a cut-cff frequency for these waves.
The vector wave solutions are obtained by substituting (24.9) into

(24.7) and (24.8). This results in two simultaneous vector equations for

the unknowns A and B.

Q
>
+
(s
[=4
=3
x
=
]
[l

(24.21)

=}

B =
18,n x A + BB

which for nonvanishing a BA, and BB are subject to

A) GB’
(24.22) n*A=0 , n-*B=0

resulting from (24.4)

2
2, 2 2 2 - 2
aA = kT(v" - cy = c3) s aB = kc3
(24.23)
- _ .2, 2 2 2, =2
BA g kwo . BB S k(v - Cy = Zwok )

Equations (24.22) show that the vectors A and B lie in a common plane whose
unit normzl is n. Solving from (24.21)2 for B we have

B
(24.24) B = -1

]
o
=" |
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Hence, the three vectors n, A, and B are mutually perpendicular. Moreover,

vanishing A implies vanishing B.

These two types of waves are, therefore,

coupled and cannot exist without each other. From (24.4)l and (24.4)3 we

see that u and ¢ corresponding to U and ¢ are normal to each other and to

the direction of propagation

n. Hence these waves are transverse waves.

We call the waves that are associated with U,transverse displacement waves,

and those that are associated with ¢, transverse microrotation waves, Fig.

24.2, The transverse displacement waves have their
equivoluminal waves and in_the limit they reduce to
The velocities of propagation of these waves

carrying (24.24) into (24.21)2 and using (24.22)1.

classical analogues in
these waves.
are determined by

This gives

(24.25) ava + bv2 +c=0

where
az=z1- 2w§w-

(24.26) b = —[ci + cg(l - Zwﬁw-z) + c§(1 - wﬁw-z)]
c = ci(cg + cg)

The positive real roots of (24.,25) are

=
3 2a

(24.,27)
v,[_L
4 2a

By studying the discriminant

1/2

b + A2-4ac )]
1/2

(b - A2-4ac)]
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2
2 2 2 2 2 1 2, 2 -2
fg -4ac = {[CA - ¢, -y + 2(c2 + > c3)w0w ]

1/2
+ 4¢ w 2}

c

2
@

2 2
374
under the conditions « > 0, y > O compatible with (21.1), we find that vy

is real when w > Wo and v, is real for all values of w. The frequency

4
= V2w, is again a cut-off frequency for waves propagating with velocity

¢ 0 b

€
"

In summary, we found that in an infinite micropolar elastic solid
six different types of plane waves propagating with four distinct speeds
of propagation can exist, These are:

(a) A longitudinal displacement wave propagating with speed vy

(b) A longitudinal microrotation wave with speed v, propagating
in the longitudinal direction whenever the frequency of these waves is
above the cut-off frequency W, . These two types of waves are uncoupled.

(c) Two sets of coupled transverse displacement waves and transverse
microtation waves at speeds v, and Vg Of these, the waves having velocity

3

vy can exist when w > W, otherwise they degenerate into distance decaying sinu-
soidal vibrations.

A detailed analysis of the wave speeds Var Vg, and v, is sketched in
Figs. (24.3) and (24.4).

By use of (21.1), Parfitt and Eringen [1966] have shown that a con-

sistent solution for Vg and v, requires the existence of
c2 > ¢
4_
or the additional inequality

(24.28) }LU* «
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In addition, the wave speeds as a function of w must satisfy
(24.29) VE(0) < va(u) < va(®)
(24.30) V(=) > Vi) > Vi)
Also they found that
(24.31) v, > v

The study of the relative magnitudes of Vo Vi and v, requires
sum of the

knowledge of the relative magnitude of the/constitutive coefficients

a + B with respect to jk. Thus

2 2 1
Vo 2V, > v, for w, < w . a+ 8 > 2 jk
*
(24.32) v§ :_vg :_vi forw <w<w , atB< % jk
v2 > v2 > v2 for w* < w
2= 3 -4

* 2 % 2 % *
where w 1s a solution of v2(w ) = v3(w ) in the range . < w < o, For

other details the reader is referred to Parfitt and Eringen [1966].
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25. REFLECTION OF A LONGITUDINAL DISPLACEMENT WAVE

In this section we study the reflection of a plane longitudinal
displacement wave at a stress-free plane surface of a micropolar half
space. If x = 0 is the plane of the incident displacement vector, then
the reflected waves from the boundary surface z = 0 can be shown to
remain in this plane so that the problem is a two-dimensional one. On
the boundary plane z = 0 being free from traction we must have
E(Q) = @(Q) = 0. Since we also have u = ¢, = ¢4 = 0 through (22.11) and

(22.12) for the tractions on z = 0, we will have t

(z)z L2z t(z)y B tzy

and ®2)x =m, ., Or using the constitutive equations and (24.4) we have

t - A(u’yy + u,zz) + (2u + »<)(u’zz - Ux,yz) = (

(25.1) t

il
) =4
—~
[=4

- U y) + (p + «)(u

zy y2 X,y ’ ’ ’ Ys2

Mox Y((z)z,yz - Qy,zz) - 0

The nonvanishing components of the solution vectors (24.9) appropriate to

this problem are given by

u, = a_ exp [1(qua ‘r - wlt)]

(25.2) UB = ;ABX exp [i(anB cr - wBt)]

®8 = (BByJ + BBZR) exp [i(kan' 0 [ = wBt)]

where w, = k v _(a = 1,2;8 = 3,4) and the repeated indices are not summed.

B8 B8
The coefficients A and B are related to each other by
iw§A3x
25.3 B, = - -
-2 e - 28 - D R
3'°3 03 4
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with a similar equation for B&'

The potentials listed in (25.2) satisfy the boundary conditions (25.1)1

at z = 0 if
wl = w3 = wa = W
(25.4) klnly = kln2y = k3n3y = kAnAy
Kinjx s koo, = kyng o= kyn,
and
2 22 2 2 2
(25.5) [Akl + (2u + <)klnlz]a1 + [)\kl + (2u + K)klnzz]a2
- Qu+ K. n. A - Qu+ K, 0, A =0
L 3" 3y"32"3x ¥ 44y 6z b

Since the incident wave is in the x = 0 plane, n < 0 and (25.4)3 yields

1

n2x =n = n = (

which 1s the proof of our statement that all reflected waves are on the

x = 0 plane, Writing

n1y = cos 61 , n2y Z cos 62 , n3y = cos 63 5 nAY = cos 64
(see Fig. 25.1) and w, = kivi from (25.4) we get
vy Vo
(25.6) cos 62 = cos 61 , COS 93 = ;I cos 61 , cosb 4= ;I cos 61

where v, are the speeds of the various waves found in Art. 24, From (25.6)

it is clear that 91 = 62.
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Substituting (25.2) into the remaining two equations of (25.1), we
obtain two other equations., These two equations and (25.5) are adequate
to determine the amplitude ratios a2/a1, A3x/al and A4x/al' The amplitude
B is determined from equations (25.3) and similar ones for 94'

If we set nly = 0 in (25.5), we find that a, = -a,. This shows

that for normal incidence the reflected longitudinal displacement wave
is also normal to the boundary. For n1y # 0, the following are the solu-

tions for the ratios of the wave amplitudes

a
(25.7) B {[» + (AM2ut+x) tan2 8. ][ (ptx) tan2 8, - u - (u+n<)Q2 tan 6, tan 6, - Q2
a; 1 4 1 3 4 2

tan 6
+ (UQi+Q§) -——'-ﬁl + (2u+o<)2 tan 6

2
tan o, p tan 6,(Q-1))

<
2
4

x{=[ M (A+2utx) tanz 01][(u+<) tan2 b, - u - (U+K)Q§ tan 53 tan 6, !

4

2 2 tan 6

+ (qu+Q3)

4 2,2 -1
T 63] + (2u+x)7(Q)-1) tan 6, tan 0}

(25.8) —= = =2Q2u+x)[x + (A+2u+x) tan2 61] tan 61

x{=[x + (A2u+k) tan2 61][(u+x) tan2 64 -y - (u+K)Qi tan €3 tan OA

tan 6

4 2,2 -1
R 63] + (2utx) (Q1 1) tan 01 tan GJ

- Q) + (uol+d)

2 2
2w ZwO 2 -1

2 - =Yy - 2yl - 2y
(25.9) Q 7 3= =) - el - = - )

[
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These results were studies in detail by Parfitt and Eringen [1966] for
various special cases. A summary of their findings is given below:

A longitudinal displacement wave at a plane stress free boundary
in general produces three reflected waves (as compared with the two waves
of the classical theory); one longitudinal displacement wave reflected
at an angle which is the same as the angle of incidence, and two sets
of coupled transverse waves, one travelling with speed Vs, and the other
set with speed v, (Fig. 25.1). Their angles of reflection are calculated
by (25.6). For normal incidence (61 = 90°) the waves at speeds Va and v
vanish and the reflected wave is a longitudinal displacement wave normal
to the boundary. The amplitude ratios as functions of the angle of inci-

dence 6., are given by (25.7) to (25.9) and similar equations for Ba.

1
The general solution prevails as 61 decreases from 90° to a critical
*

angle 61 which makes 63 = 0 and AAx = 0, At this angle of incidence we

have a surface motion travelling at speed v, and a reflected longitudinal

* *
wave at speed v, and angle 6, = 6. = 6., As 6. decreases from 6, to zero,
1 2 1 1 1 1
the angle 6, becomes complex, The interpretation in this case is that a

3

longitudinal wave is reflected into the medium at an angle 61 and a coupled
transverse wave (decaying with depth and travelling at a speed c, in the
range v, < ¢ Z Vg is reflected. For 6l + 0, a 1limit solution is possible
Parfitt and Eringen have also studied the reflection of coupled
transverse shear and microrotational waves and the reflection of a longi-

tudinal microrotational wave. For these and other interesting results, the

reader is referred to the foregoing reference.
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26, MICROPOLAR SURFACE WAVES1

In this section we investigate the propagation of surface waves
in a micropolar half space. In Section 25 we have shown that the inci-
dent and reflected waves propagate in the same plane. We select this
plane to be the x = 0 plane. Thus we take u, = ¢2 = ¢3 =0, f=2=20,
and u, z v(y,z,t) uj : w(y,z,t) and ¢1 z ¢(y,z,t) as functions of y, z,
and t only. In this case (22.1) and (22.2) reduce to

2

LA 2 2 3 _ 3V
(A + ) % (ay + az) + (u+ Vv + x 2 p 3t2 0
26.1) (0 + ) e B+ By L+ )R- 22 i’iw
’ 3z ‘dy = 9z H v 3y P 52
2 w v 32
v%0 + (o &y _oce - g3 =2 -0
ay oz atz

where V2 is the two-dimensional laplacian operator, e.g.,

2 32 32

3y2 9z

v

We consider waves which are propagating in the plane x = 0 with an amplitude

decay in the z direction.

<
[}

A exp (-Cz) exp [iq(y - ct)]

(26.2) w

B exp (-2z) exp [iq(y - ct)]

¢ = C exp (-22z) exp [iq(y - ct)])

1 Suhubi and Eringen [1964b]
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Substituting (26.2) into (26.1) gives three equations
2 2 2 2
[-(A+ 2u+x)q" + (u+ k)" +pqc’]JA=- (A+ u)iqiB - xzC =0
2 2 2 2
(26,3) - (A + wiqA + [(A+ 20+ k)" - (u+ xK)q +pq c]B - igqrC = 0
KA + quB-+[y(c2 - qz) - 2x + DJQZCZ]C = 0

A nonvanishing solution for A, B, and C may exist if the determinant of

the coefficients is zero. This gives

2 2 2
c c, - ¢ 2
2
(26.8) [(c + e’ = (e + =5—a") ([108c° - 30 - $a’ - 2¢]
(:2 C2 5 CZ
[e + 1);2 - (e+1- 5-2-)q2] + ez(c2 - q2)} = 0
[
2
where
e a2 2 n 292
(26.5) (0 c3/c2 . 8 = c4/c2

and c, to c. are given by (24.3). A set of approximate roots of (26.4) is

1 5

obtained by neglecting the terms containing 52. Hence

2
c

2
A L e

c1 + c3

2

2
(26.6) 2an-a-e S

€2

2
225+ -5

%37 < 7Je r
4
In order for the waves to be surface waves, we must consider only the posi-

tive values of the roots Cl’ Lo and C3- The displacement and microrotation

field can now be expressed as
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3
v = Z Ak exp (-ckz) exp [1q(y - ct)]
k=1
3

(26.7) w = kZIAkAk exp (-Ckz) exp [iq(y - ct)]

¢ = u3A3 exp (-c3z) exp [1q(y - ct)])

where
(26.8) 1 q ' 2 ) ’
2 2
e Myt A r aGE-"Fa4) 7]
3 3 é c
4 2
On stress-free boundary surface we must have
oV ow
tzz = Aay + (A + 2u + x) 3z 0
at z =0
(26.9) it aplr@rg P e
) zy Ay dz

m_ =y i, 0

zZX 9z

Substituting (26.7) into (26.9), we obtain a set of three homogeneous equa-
tions for Al, A2, and A3. The determinant of the coefficients must vanish,

Hence

a0 e cail® M i LAET = K] e W] - K = O

(26.11) Gqug = 0
where

N B
(26.12) wsc /c2 , k= c2/c1

For € = 0, (26.10) reduces to the classical expression of the Rayleigh surface

waves., Denoting the values of w for this case, with Wr to a first-order
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apptoximation in ¢, we obtain

l6(l-ka)
(2¢ 13) w = wp + 2 €
3wR - 16wR + 8(3-2k)

For k = 1/3, which correspond to Poissons ratio 1/4, and for the incom-

pressible solids (k = 0) we have, respectively,

c=0,919 (1 + 0.9325)c2 , (k = 1/3)
(26.14)
c=0,955 (1 + 0.783e)c2 , (k =0)

The terws ccntaining € are the first-order corrections to the Rayleigh
wave velocity in each case.
Equation (26.11) gives the speed of propagation of a new type

surface wave not encountered in classical elasticity. This is given by

1/2 -1 1/2 -1
. q ? q

(26.15) < 5 [2e/3(L + € - 8))
e

= (2e/3)

This new wave speed depends on /e and 1t 1is dispersive,
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27. STRESS CONCENTRATION AROUND A CIRCULAR HOLE

For the determination of the stresses in a plate with a circular
hole, we need to express the basic equations of micropolar elasticity
in plane polar coordinates (r, 8), Fig. 27.1. For the equations of

balance of momenta, parallel to classical elasticity, we have

2
atrr . 1 ater - Cer " tee % 5 = : r
ar  r 28 T e 3
at
ot ot t +t azu
27.1) re,1l 86, e or, . . "8
j or r 96 r 8 2
ot
om om m 82¢
rz . 1 0z rz _ ] z
or i r a6 P r % tre ter A p9':: fJ at2

For the nonzero components of the strain tensor ) given by (4.17) through
the methods presented in Eringen [1962, Appendix] we obtain

au
e = ==L

rr or

88
(27.2)
ré or z
Ju

1 r
eer . r ( 30 “e) v ¢z

The constitutive equations for the stress read

(ad
"

(A 4+ 2u+ ke + e
rr

Ir 06

(o]
L}

00 Aerr + (A + 2u + <)eee

(27.3)

= + -
t (u K)Cre ue

ro or

t = ye

6r

ro rey K)Eer
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In these equations (tr

tro,...), (e cre....) and . and u, are,

5’ e e
respectively, the physical components of the stresses, strains, and
displacements,

The equations of compatibility (8.9) in plane polar coordinates

take the form

aeer o or T Fro 2 ks %y - %, 0
or r r 96 or
27.4) 00 , fe0 ~rr 1 2o 1 2 .
’ or P r 36 r 9
omo, - Toz L amrz -0
ar r r o0

For static problems and vanishing body loads upon introducing the

stress functions F(r, 6) and G(r, 8) by

. oL eE, 1 2% 1 %, 16
rr r r 2 2 r oradf 2 36
r 4o r
L JXE 1 0% 126
06 2 r 9rdb 2 36
ar
1 BZF 1 9F 1 3G 1 32G
(27.5) teo " " rro6t 736 ror- 2.2
r 90
or r d9radf 2 36 2
or
- 3 < 136
rz or ? 0z r 9

we see that equations (27.1) are satisfied identically. From (27.3), we

solve for the strains in terms of the stresses and then substitute (27.5)
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for the stress components. If we now use the expressions (27.4), we get

) 2.2 5.1 e, 8
= (62 V6) #2201 - vp° 255 (VD)
(27.6)
L i 2.2 2.9 ,2
=35 (6 - V%) = 2(1 - vb" 57 (V)
where
g + « b2 - Y
¢ FX2u + 0 ’ 2020 + x)
(27.7)
ppm— T N RN N RO
z , i
22 4+ 2u 4+ « ar2 r or r2 ae2

Solutions of the following equations are also solutions of (27.6)

2 2

(27.8) Pr=0 , 9%~ c2v%) =0

For the problem of a circular hole in a plate (or cylindrical cavity in an
infinite solid) subject to a field of simple tension at infinity, an appro-
priate solution of (27.8) is

A

log r + (—% + A3) cos 26
r

F= Z'rz(l - cos 20) + A

4 1

(27.9)
A,
G= [-3-+ ASKZ(r/c)] cos 28
r

where K2 is the modified Bessel function of the second kind and second order.

This set satisfies (27.6) 1if

2
(27.10) AQ = 8(1 - v)c A3

The remaining four constants Al, A2, A3, and A_ are to be determined from the

5

boundary conditions
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t =t =nm =0 forr=a
rr ro rz

t --g-(l+cos 26)

rr
(27.11) for r = =
T
tre = - 2 sin 26
m = 0
re

Here T 1s the constant tension field at a plane x = const at infinity, Fig.
27.1, By use of (27.5) and (27.9), we calculate the components of the stress

and couple stress tensors
A 6A 4A 6A

T 1 2 3 4
trr =3 (1 + cos 26) + ¥ = 3 + 2 4) cos 26
r r r
2A 2

5 3¢ 6c
+ = [ . Ko(r/c) + (1 + r2)Kl(r/c)] cos 20

A 6A 6A
I, SR PP - ]
tee =3 (1 - cos 26) > + ( 4 4) cos 26
r r r
2A 2

- Tf. [3—: Ko(r/c) + (1 + 6—:'2)Kl(r/c)] cos 28

+ 2. 2) sin 26
r

(27.12) tg" -

=3
+

12c2

2
r

As 6c
i [—r Ko(r/e) + (1 +

)Kl(r/c)] sin 20

6A 2A 6A

T 2 3 4
ter = -(2 + 4 + 2 - 4) sin 26
r r r
A 2 3
5 6¢c 3c N
+ = [(1 + Z)Ko(r/C) + ( =t )Kl(r/c)] sin 26
c r r
2A A 2
4 5.2¢ 4e
.- 3 sin 20 - —=[=F Ko(r/c) + (1 + r2)Kl(r/c)] sin 26
2A 2A

mg, = {-:§-+ —;2 [Ko(r/c) + %f Kl(r/c)]} cos 26
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Using the boundary conditions (27.11), we find that

4
A._Iz A-Ta(l-Fl)
1 3 s 27 4@+ F))
2 2! 2
K Ta - 4(1 - vV)a'b'T
(27.13) Mrra+r M T+F,
TacF
By > = 1
5 1+ Fl)Kl(a/c)
where
b2 a2 24 Ko(a/c) =
(27.14) Fl = 8(1 - v) :E (4 + ?.’. ?m]

Substituting (27.13) into (27.12), we obtain the stress and couple stress

fields. The value of te at the perifery of the circular hole is of great

6

interest. For this we obtain

- 2 cos 26
(27.15) tee T(1 + 13 Fl )
The maximum value of this t occurs at 6 = x§/2,
66max
t 3+F
66 max _ = 1
(27.16) = = SC 1+ Fl

The quantity Sc so defined 1is the stress concentration factor. From (27.14)
it is clear that Sc degends on v, a, b, and c.

The above result, (27.16), was given by Kaloni and Ariman [1967]} who
adopted the solution of the same problem for the indeterminate couple stress
theory given by Mindlin and Tiersten [1962]. 1If we set b2/c2 = ], we obtain

for Fl the one given by Mindlin ([1963], namely,
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-1
(27.17) Fo = o(l - v)[4+ 9;+ 2—:%1
L 1
where £ is a physical length for a given material. The case of b2/c2 =]
gives « = -2y which 1s not acceptable on grounds of uniqueness and physical
reasonableness since x cannot be as great as twice the shear modulus., Other
discussion of these results and comparison of the stress concentration factors

of the indeterminate couple stress theory and micropolar theory are to be

found in Kaloni and Ariman [1967]. Below we reproduce several of their curves.
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28. GALERKIN AND PAPKOVITCH REPRESENTATIONS1

A useful mathematical representation for the displacement and micro-

rotation fields can be constructed as follows: Let

pbm s o2 Dlagh o B
xi'Bxi'T'at’Q'xl+x2+x3'Ql'

(28.1)

(A+ 2u+ «)Q - oT

Q, = (4 + K)Q - 0T%Qy = (M#BHNQ-PIT? =25, Q= v Q = P17 - 2x

and let the matrix L = [Lij] , (1, = 1,2,...,6) be given by

(28.2)
- 2
Q2 + (A+u)xl (Mu )Xlx2 (>\+u)xlx3 0 -.<x3
2
(A+u)x1x2 Q2 + (A+u)x2 (A+u)X2X3 KX3 0
2
(A+u)xlx3 (A+u)x2x3 Q2 + (A+u)x3 -xxz <x1
I:-
2
0 -xx3 sz Q4 + (or+6)x1 (a+B)x1x2
2
xx3 0 -xxl (a+8)xlx2 Qa + (a+8)x2
-KXZ KXl 0 (a+B)X1X3 (<x+8)){2){3

The equations (22.1) and (22.2) can be expressed in the matrix form

kX

-kX

(a+s)x1x3

(a+S)X2X3

2
Q4+(a+B)X3

: Sandru [1966]
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For the inverse L_1

(28.4)

where

1 1

uy £

u f

L 3 - —p 3

1 Y

¥ 5

. ¥ 4 B
1y of the matrix Lij we have, formally,

- Ny

L

13 7 Q,0,(Q,Q, + <%Q)

Dhppie))
Nii = Q3{Q].Q[0 =i [(k"U)Ql’ = K ]xi} ’ (i = 1,2,3)

i1

13

14

(28.5)

14

15

16

No6

Consider now

N

[(+8)Q, = x21X;_;)s (1 = 4,5,6)

=135~

= Q-0 + KIKX, L 143, (1,9 = 1,2,3)

2
¥ = Q, [-(a+8)Q, + « ]x1-3x3-3' 143, (1.3 = 4,5,6)

Nyg = Hag

=N, =N, +N,_,=0

T e
Noy = %Q Q%4
e = 99 %,

Wy * YR
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i u ] [ Fy |
) Fa
(28.6) N
U1 L1
) £
N

*
I o' Q3E and ¢, = Q,F through (28.5) and (28.6), we find that

wex,t) = O, 0Oye, -1+ w0, - ey -0 -« v x ¢

1 3 ~2
(28.7)
— 2
Q(’f)t) = D2D3?2_ [(G+ B)LJZ— K ]YY ?2 -KD]_Y "?1
where
2 2
DIE(A+2u+K)V2-p—a—2- ,Dzs(u+'<)\72-p—a?
9t ot
(28.8)
2 2
D E(a+8+y)V2-pj —a’-ZK,D EyVZ-pj L,-ZK
2 atz g 4 ot

From (28.3), (28.4), and (28.7), it follows that ¢  and ¢, satisfy the follow-

1 2

ing uncoupled equations

2.2
Ell([j2 Da + Ve, = -of
(28.9)

22
D3(D2[:14+ V)¢, = -p2

If we take « = 0 in (28.9)1, we obtain a representation known in the classical
theory of elasticity.
In the static case, we set T = 0 in (28.7) and (28.8) and obtain the

Galerkin representation for the micropolar elasticity, namely,



u(x) = (A + 2y + K)VZ(YVZ - 2K)91 - [y(x + u)V2 - k(2X + 2y + x)]

W e - xllat 84 DV - 2607 X g

(28.10)
¢p(x) = (u + K)Vz[(a + 8+ y)v2 - 2%«]e, - [(w+ (a+ s)v2 - legg . 4,

- k(X + 2y + K)VZ(Y x Ql)
where Ql and 92 satisfy the equations

(A + 2u+ K)Vl'[(u ] K)W2 - kQu+ Q)8 = -of

(28.11)
[(a+ 8+ V) = 2][(u + DYT" = (2 + K)o, = -ot

For « = 0. (28.10)1 gives Galerkin's representation of classical elasticity.
We decompose the body force and body couple into irrotational and

solenoidal parts as follows:

©
Loy
L}
<]
=
o
+
<]
X
- |

(28.12)

and note that

<
X
=

2.2
(DZDQ+KV)91-VAO, Dlgl._

(28.13)

2.2 * *
(0, 0, + *v®ye, = wg, Oy, =

1<
x
e

From (28.7) and (28.9) it now follows that

* *
(28.14) Oro = -1o E]3Ao S

and we obtain
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*
l_x-VAo+Yx(D4I_\)-<Yx(YxA)
(28.15)

o= =t x @+ 7 x (0,00

*
Thus, if we determine Agp, A and A for a given problem, the displacement
and microrotation fields can be calculated from (28,15).

Another useful decomposition can be deduced from (28.11) with

f =2 =0 by selecting ¢, and 92 as the sum of three special vector

1

functions. This has the form

R R T s L R R VI v AR CVLR WY
(28.16) + 29 x}gl-z—ui-:g x B,

¢ =90 - B, + B - gy g 4 yy B 4T xa +EE Ty
where Ag, él’ 52, §1, §2, and §3 satisfy

vag = 0, v, =0, (1--51’(2:—:%v2);_\2-g

(28.17)

2 - _a+8+x2 a _SE"'"!I 2 -

These results when « -+ « reduce to the corresponding decomposition for the

indeterminate couple stress theory obtained by Mindlin and Tiersten [1962].
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29, MICROPOLAR INFINITE SOLID SUBJECT TO
CONCENTRATED FORCE AND CONCENTRATED COUPLE

The problem of an infinite solid subject to a concentratec force F
and a concentrated couple C at the origin of coordinates x = 0 is of fund-
amental interest. In classical theory, this problem is known as Kelvin's
problem. This problem for the static case was treated by Sandru [1966].

(1) Concentrated Force. Let F be a concentrated force acting at

the origin of the coordinates x = 0. We write
(29.1) pf = F6(x)

where §(x) 1is the Dirac delta function.

The solution of (28.12)1 is given by

To(x) = - & (flof(g)\z(%)dv(g)

(29.2)
1 1
Hx) = -7 £o§(§) x 1(D)dv(E)
where
1/2
(29.3) pe g - 674 (xy - 6% 4 (g - 590

Using (29.1) we find

1
Mg = =37 F Q)
(29.4)
1L
- PR
where
1/2
= 2 2 2
(29.5) R = (x1 + X, + x3)
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From (28.13)1 2 for the static case we get
’

(A + 2u+ K)VZAO e 2 F - Y(ﬁl')

4
(29.6)
4 1 ey
[y(u + )V = «(2u+ <) JA = = F x Q)
These equations possess the solutions
1 TR
ho = Sr0w2mto) R
(29.7)
2 F
1 % F -R/%
kT 8 (2ut+k) vk (ER) o 4k (2utx) 2 [R (1-e )]
where
2 _ y(u + g
(29.8) ™ E R
*
With A = 0, (28.15) gives for the static case
B 5)+63+3x e 2 \+2ptk i
® 7 Bn(2utk) O#2ut) R T Bn(2ube) ObZpte) 3 °
F-rp_..
(29.9) * ATCLINE) v x {V x Pi (e -1)]}
F
1 S o _ R/R
¢ = 4m(2u+x) . [R (1-e )]

For k =y =0, (29.9)1 reduces to the well-known solution of Kelvin's problem,
Love, [1944, p. 185]. The solution of this problem for the indeterminate
couple stress theory 1s obtained by letting « -~ «. This gives the result
obtained by Mindlin and Tiersten ([1962].

(11) Concentrated Couple. Let M be a concentrated couple acting at

X = Q. We write

-

pL = Mé(x)
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In this case, we express the solution of (27.12) in the same way as in (28.2).

Using (28.13)2 3 for the static case we have
’

[(a + 8+ vV = 2¢]Ag = -Mg

(29.10)
4 2, .* *
[y(w + 7" - x2u + <)V7]A = -
where
¥ 1 1 b 1 1
(29.11) Mo = -7+ ¥ Y(R) y I = - M x Y(R)

Equations (29.10) have the solutions

Mo =gt - 9 @R o)
(29.12)

Q*.mg % ()_m)+m-(-é-:i—()?\z x [% (1-e-M')]
where
(29.13) pleot B4y

2k

Substituting these results into (28.15) for the static case, and with Ap = 0

and A = 0, we obtain

1 . -R/%
¥ 7 Tn(2ute) 0 [R (1 - )]
(29.14) 5
- 1 . 9[: (e"R/h o fu ol (1 - oR/E
¢ = goe M ¢ Vg (e DI+ o VX Uxlg A -e O]}

These results may be used in (20.23) and (20.24) to obtain the stress and

couple stress fields.

It is worth noting here that the concentrated couple is a fundamental

problem which is not deduced as the limiting solution of two equal parallel
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forces directed in opposite sense. We note that in micropolar elasticity,
the concept of body couple is totally independent of the force and it can
exist even when the body force is absent. For micropolar elasticity, there-
fore, force and moment singularities will have totally different natures.
This is then expected to affect uniqueness theorems for infinite and for

the finite regions considerably.
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SUMMARY

The theory of micropolar elasticity presented here should provide
an adequate background for pursuing analytical work and starting a badly
needed experimental program. We believe the theory is well-posed with field
equations, boundary and initial conditions. Certain wide classes of unique-
ness theorems have been proved though not presented here (cf. Eringen [1966a]).
The important implications of the theory are brought to the surface especially
in connection with the problems in the field of wave propagation. Existence
of additional waves over those existing in classical elasticity should be
attractive to workers in the field of experimental wave propagation. The
linear theory is simple enough to lend itself to the solution of non-trivial
boundary and initial value problems. With the additional internal degrees
of freedom provided by the microrotation and spin inertia, it incorporates
the problems involving concentrated body and surface couples into the funda-
mental singularities of the field.

The field is rather new and not even partly explored. Experimental
works are badly needed. Nevertheless, it seems to us that the logical founda-
tion of the theory is solid and promising for the understanding of the mechanics

of micropolar solids.
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POSSIBLE DIRECTIONS FOR FUTURE RESEARCH

The theory of micropolar elasticity presented here is one of the
simplest extensions of the classical theory of elasticity for the treat-
ment of materials with microstructure., Extensions of this theory to
micropolar fluids and viscoelasticity exist (cf. Eringen [1964], [1966b],
[1967]). A nonlinear theory is also contained in the more general theory
of microelasticity given by Eringen and Suhubi [1964a,b]). The theory of
micromorphic materials, of which the theory of microelasticity is a repre-
sentative field for the oriented solids, possesses promise for entering
the granular and molecular world of materials from the continuum side. It
should not be surprising if such a theory would be in wide use for the full
description of material properties of composites, granular and fiberous
solids. The connection of these theories to continuum dislocation theory
has already been exhibited. The intimate ties between the plasticity theory
and continuum dislocations has been recognized for some time bty scme research
workers in this field (cf., Kondo [1962], [19623], Kroner [1963), Bilby [1960],
Bilby, Gairdner and Stroh [1967])). Existing theories of micromechanizs, multi-
polar theories, and the continuum theory of dislocations have not been
amalgamated into a unified structure as yet, although some attempts exist
in this direction. Presently, serious efforts are being made to bring some
order to the world of the microcontinuum. The field of micromorphic materials
needs and deserves attention from both theoretical and experimental workers.
Especially, the need for rational experiments is felt badly. The theory of
micropolar elasticity is certainly ready fcr such i test. The theory of
micromorphic materials with its logical structure .nd wide possible applica-

tions opens new and promised rich lands for futu-e workers.
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LIST OF SYMBOLS

Acceleration vector

Third-order microdeformation rate tensor

Second-order microdeformation rate tensor
Wave speed

Micropolar elastic wave speeds

Spatial and material deformation tensors

Differential operator as in dx

Area element

Spatial and material volume elements

Deformation rate tensor

Material derivative operator

Spatial and material strain tensors

Body force per unit mass

Heat source per unit mass

Spatial and material microinertia tensors
Jacobians

Body couple per unit mass

Couple stress tensor

Surface couple

Exterior normal vector to a surface
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Heat flux vector directed cutward of the surface

Spatial and material macrorotarion vectors
Spatial and material macrc:z.t.tion tensors
Spatial and material surfaces

T1ime
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tki Stress tensor

E(Q)’ t(g)k Surface traction

Y UK Spatial and material displacement vectors
v, V Spatial and material volumes

v, Vi Velocity vector

Wi Vorticity vector

Wi Vorticity tensor

Spatial rectangular coordinates

T
.

Material rectangular coordinates

152
<

o Micropolar elastic constant
a, o Microacceleration vector
B8 Micropolar elastic constant
Y Micropolar elastic constant
Yietm? FKLM Third-order microstrain tensors
s ., 6 Kronecker deltas (=1 when indices take the same number,
k& KL
zero othervise)
€ Internal energy density per unit mass
ekl’ EKL Second-order microstrain tensors
€1 lm Permutation symbol (5123 = €591 T €312 T “f213 T “f139

and zero otherwise)

n Entropy density per unit mass

6 Absolute temperature

K Micropolar elastic constant

A, u Elastic ~onstants

Vs Vi Gyration vector

Vi Gyration tensor

£y ik Spatial relative position vector

11]

t(r
=

Material relative position vector
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o] Mass density

g, %% Intrinsic spin vector

¢, ¢k Spatial microrotation vector

¢k2’ ®KL Microdisplacement tensors

¢, ®K Material microrotation vector

{k, XKk Spatial microdisplacement vectors
Xk* Xk Material microdisplacement vectors
] Helmholtz free energy

wkl’ WKL Microdeformation tensors

I, 11, III Invariants of tensors

v Gradient operator

V2 Laplacian operator

0 Wave operator

Cartesian tensor notation is used where indices take values 1,2,3.

Repeated indices indicate summation over the range 1,2,3 unless other-

wise stated. Indices following a comma indicate partial differentiation,

e.g. = 9 9X,. A superposed dot indicates time rate with material
g8, X = X /X perp

ax

point fixed, e.g., x = 3? IX .

Indices enclosed within parenthesis and brackets indicate symmetric
and antisymmetric parts, e.g.,
1

3 (

- 1
Ck)° 2

ke T ) 0 fre)” 7 e T S
To convert into expanded engineering notation use

X) =X, Xy =Y, Xy =2

up =u, u, = uy' uy = u,

£11 7 fxx T %% t12 T txy B Txy’ e

where 0 Txy"" are the conventional stress components sometimes used

in engineering literature,.
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FIG. 14.4. EQUIPOLLENT FORCE AND COUPLE ON Aa



FIG. 14.5. SURFACE AND BODY LOADS



FIG. 15.1. MACROMASS ELEMENTS CONTAINING MICROMASS ELEMENTS



FIG. 16.1. SURFACE LOADS



FIG. 16.2., A TETRAHEDRON WITH SURFACE LOADS
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